Hyppää pääsisältöön
Ratkaise muuttujan x suhteen
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

x^{2}=12
Lisää 12 molemmille puolille. Nolla plus mikä tahansa luku on luku itse.
x=2\sqrt{3} x=-2\sqrt{3}
Ota neliöjuuri yhtälön molemmilta puolilta.
x^{2}-12=0
Tämän kaltaiset toisen asteen yhtälöt, joissa on x^{2}-termi, mutta ei x-termiä, voidaan silti ratkaista toisen asteen yhtälön ratkaisukaavalla \frac{-b±\sqrt{b^{2}-4ac}}{2a}, kunhan ne on muutettu perusmuotoon ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-12\right)}}{2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 1, b luvulla 0 ja c luvulla -12 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-12\right)}}{2}
Korota 0 neliöön.
x=\frac{0±\sqrt{48}}{2}
Kerro -4 ja -12.
x=\frac{0±4\sqrt{3}}{2}
Ota luvun 48 neliöjuuri.
x=2\sqrt{3}
Ratkaise nyt yhtälö x=\frac{0±4\sqrt{3}}{2}, kun ± on plusmerkkinen.
x=-2\sqrt{3}
Ratkaise nyt yhtälö x=\frac{0±4\sqrt{3}}{2}, kun ± on miinusmerkkinen.
x=2\sqrt{3} x=-2\sqrt{3}
Yhtälö on nyt ratkaistu.