Hyppää pääsisältöön
Ratkaise muuttujan x suhteen
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

a+b=-10 ab=24
Jos haluat ratkaista kaavan, kerroin x^{2}-10x+24 käyttämällä kaavaa x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
-1,-24 -2,-12 -3,-8 -4,-6
Koska ab on positiivinen, a ja b on sama merkki. Koska a+b on negatiivinen, a ja b ovat molemmat negatiivisia. Luettele kaikki tällaisia esimerkiksi tuote 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Laske kunkin parin summa.
a=-6 b=-4
Ratkaisu on pari, joka antaa summa -10.
\left(x-6\right)\left(x-4\right)
Kirjoita tekijöihin jaettu lauseke \left(x+a\right)\left(x+b\right) uudelleen käyttämällä saatuja arvoja.
x=6 x=4
Voit etsiä kaava ratkaisuja, ratkaista x-6=0 ja x-4=0.
a+b=-10 ab=1\times 24=24
Ratkaise yhtälö jakamalla vasen puoli tekijöihin ryhmittelyn avulla. Vasen puoli on ensin kirjoitettava uudelleen muotoon x^{2}+ax+bx+24. Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
-1,-24 -2,-12 -3,-8 -4,-6
Koska ab on positiivinen, a ja b on sama merkki. Koska a+b on negatiivinen, a ja b ovat molemmat negatiivisia. Luettele kaikki tällaisia esimerkiksi tuote 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Laske kunkin parin summa.
a=-6 b=-4
Ratkaisu on pari, joka antaa summa -10.
\left(x^{2}-6x\right)+\left(-4x+24\right)
Kirjoita \left(x^{2}-6x\right)+\left(-4x+24\right) uudelleen muodossa x^{2}-10x+24.
x\left(x-6\right)-4\left(x-6\right)
Jaa x toisessa ryhmässä ensimmäisessä ja -4.
\left(x-6\right)\left(x-4\right)
Jaa yleinen termi x-6 käyttämällä osittelu lain mukaisesti-ominaisuutta.
x=6 x=4
Voit etsiä kaava ratkaisuja, ratkaista x-6=0 ja x-4=0.
x^{2}-10x+24=0
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 24}}{2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 1, b luvulla -10 ja c luvulla 24 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 24}}{2}
Korota -10 neliöön.
x=\frac{-\left(-10\right)±\sqrt{100-96}}{2}
Kerro -4 ja 24.
x=\frac{-\left(-10\right)±\sqrt{4}}{2}
Lisää 100 lukuun -96.
x=\frac{-\left(-10\right)±2}{2}
Ota luvun 4 neliöjuuri.
x=\frac{10±2}{2}
Luvun -10 vastaluku on 10.
x=\frac{12}{2}
Ratkaise nyt yhtälö x=\frac{10±2}{2}, kun ± on plusmerkkinen. Lisää 10 lukuun 2.
x=6
Jaa 12 luvulla 2.
x=\frac{8}{2}
Ratkaise nyt yhtälö x=\frac{10±2}{2}, kun ± on miinusmerkkinen. Vähennä 2 luvusta 10.
x=4
Jaa 8 luvulla 2.
x=6 x=4
Yhtälö on nyt ratkaistu.
x^{2}-10x+24=0
Tällaiset toisen asteen yhtälöt voidaan ratkaista neliöksi täydentämällä. Neliöksi täydentäminen vaatii, että yhtälö on muodossa x^{2}+bx=c.
x^{2}-10x+24-24=-24
Vähennä 24 yhtälön molemmilta puolilta.
x^{2}-10x=-24
Kun luku 24 vähennetään itsestään, tulokseksi jää 0.
x^{2}-10x+\left(-5\right)^{2}=-24+\left(-5\right)^{2}
Jaa -10 (x-termin kerroin) 2:lla, jolloin saadaan -5. Lisää sitten -5:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
x^{2}-10x+25=-24+25
Korota -5 neliöön.
x^{2}-10x+25=1
Lisää -24 lukuun 25.
\left(x-5\right)^{2}=1
Jaa x^{2}-10x+25 tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{1}
Ota neliöjuuri yhtälön molemmilta puolilta.
x-5=1 x-5=-1
Sievennä.
x=6 x=4
Lisää 5 yhtälön kummallekin puolelle.