Ratkaise muuttujan x suhteen
x=\frac{3}{4}=0,75
Kuvaaja
Jakaa
Kopioitu leikepöydälle
x^{2}-\frac{3}{2}x+\frac{9}{16}=0
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\left(-\frac{3}{2}\right)^{2}-4\times \frac{9}{16}}}{2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 1, b luvulla -\frac{3}{2} ja c luvulla \frac{9}{16} toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-4\times \frac{9}{16}}}{2}
Korota -\frac{3}{2} neliöön korottamalla sekä osoittaja että nimittäjä neliöön.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9-9}{4}}}{2}
Kerro -4 ja \frac{9}{16}.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{0}}{2}
Lisää \frac{9}{4} lukuun -\frac{9}{4} selvittämällä yhteinen nimittäjä ja laskemalla osoittajat yhteen. Supista sen jälkeen murtoluku pienimpään mahdolliseen nimittäjään.
x=-\frac{-\frac{3}{2}}{2}
Ota luvun 0 neliöjuuri.
x=\frac{\frac{3}{2}}{2}
Luvun -\frac{3}{2} vastaluku on \frac{3}{2}.
x=\frac{3}{4}
Jaa \frac{3}{2} luvulla 2.
x^{2}-\frac{3}{2}x+\frac{9}{16}=0
Tällaiset toisen asteen yhtälöt voidaan ratkaista neliöksi täydentämällä. Neliöksi täydentäminen vaatii, että yhtälö on muodossa x^{2}+bx=c.
\left(x-\frac{3}{4}\right)^{2}=0
Jaa x^{2}-\frac{3}{2}x+\frac{9}{16} tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{0}
Ota neliöjuuri yhtälön molemmilta puolilta.
x-\frac{3}{4}=0 x-\frac{3}{4}=0
Sievennä.
x=\frac{3}{4} x=\frac{3}{4}
Lisää \frac{3}{4} yhtälön kummallekin puolelle.
x=\frac{3}{4}
Yhtälö on nyt ratkaistu. Ratkaisut ovat samat.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}