Hyppää pääsisältöön
Ratkaise muuttujan x suhteen
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

a+b=1 ab=-12
Jos haluat ratkaista kaavan, kerroin x^{2}+x-12 käyttämällä kaavaa x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
-1,12 -2,6 -3,4
Koska ab on negatiivinen, a ja b vastakkaisen merkit. Koska a+b on positiivinen, positiivisen luvun absoluuttinen arvo on suurempi kuin negatiivisen. Luettele kaikki tällaisia esimerkiksi tuote -12.
-1+12=11 -2+6=4 -3+4=1
Laske kunkin parin summa.
a=-3 b=4
Ratkaisu on pari, joka antaa summa 1.
\left(x-3\right)\left(x+4\right)
Kirjoita tekijöihin jaettu lauseke \left(x+a\right)\left(x+b\right) uudelleen käyttämällä saatuja arvoja.
x=3 x=-4
Voit etsiä kaava ratkaisuja, ratkaista x-3=0 ja x+4=0.
a+b=1 ab=1\left(-12\right)=-12
Ratkaise yhtälö jakamalla vasen puoli tekijöihin ryhmittelyn avulla. Vasen puoli on ensin kirjoitettava uudelleen muotoon x^{2}+ax+bx-12. Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
-1,12 -2,6 -3,4
Koska ab on negatiivinen, a ja b vastakkaisen merkit. Koska a+b on positiivinen, positiivisen luvun absoluuttinen arvo on suurempi kuin negatiivisen. Luettele kaikki tällaisia esimerkiksi tuote -12.
-1+12=11 -2+6=4 -3+4=1
Laske kunkin parin summa.
a=-3 b=4
Ratkaisu on pari, joka antaa summa 1.
\left(x^{2}-3x\right)+\left(4x-12\right)
Kirjoita \left(x^{2}-3x\right)+\left(4x-12\right) uudelleen muodossa x^{2}+x-12.
x\left(x-3\right)+4\left(x-3\right)
Jaa x toisessa ryhmässä ensimmäisessä ja 4.
\left(x-3\right)\left(x+4\right)
Jaa yleinen termi x-3 käyttämällä osittelu lain mukaisesti-ominaisuutta.
x=3 x=-4
Voit etsiä kaava ratkaisuja, ratkaista x-3=0 ja x+4=0.
x^{2}+x-12=0
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-1±\sqrt{1^{2}-4\left(-12\right)}}{2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 1, b luvulla 1 ja c luvulla -12 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-12\right)}}{2}
Korota 1 neliöön.
x=\frac{-1±\sqrt{1+48}}{2}
Kerro -4 ja -12.
x=\frac{-1±\sqrt{49}}{2}
Lisää 1 lukuun 48.
x=\frac{-1±7}{2}
Ota luvun 49 neliöjuuri.
x=\frac{6}{2}
Ratkaise nyt yhtälö x=\frac{-1±7}{2}, kun ± on plusmerkkinen. Lisää -1 lukuun 7.
x=3
Jaa 6 luvulla 2.
x=-\frac{8}{2}
Ratkaise nyt yhtälö x=\frac{-1±7}{2}, kun ± on miinusmerkkinen. Vähennä 7 luvusta -1.
x=-4
Jaa -8 luvulla 2.
x=3 x=-4
Yhtälö on nyt ratkaistu.
x^{2}+x-12=0
Tällaiset toisen asteen yhtälöt voidaan ratkaista neliöksi täydentämällä. Neliöksi täydentäminen vaatii, että yhtälö on muodossa x^{2}+bx=c.
x^{2}+x-12-\left(-12\right)=-\left(-12\right)
Lisää 12 yhtälön kummallekin puolelle.
x^{2}+x=-\left(-12\right)
Kun luku -12 vähennetään itsestään, tulokseksi jää 0.
x^{2}+x=12
Vähennä -12 luvusta 0.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=12+\left(\frac{1}{2}\right)^{2}
Jaa 1 (x-termin kerroin) 2:lla, jolloin saadaan \frac{1}{2}. Lisää sitten \frac{1}{2}:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
x^{2}+x+\frac{1}{4}=12+\frac{1}{4}
Korota \frac{1}{2} neliöön korottamalla sekä osoittaja että nimittäjä neliöön.
x^{2}+x+\frac{1}{4}=\frac{49}{4}
Lisää 12 lukuun \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{49}{4}
Jaa x^{2}+x+\frac{1}{4} tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Ota neliöjuuri yhtälön molemmilta puolilta.
x+\frac{1}{2}=\frac{7}{2} x+\frac{1}{2}=-\frac{7}{2}
Sievennä.
x=3 x=-4
Vähennä \frac{1}{2} yhtälön molemmilta puolilta.