Ratkaise muuttujan x suhteen
x=-10
x=1
Kuvaaja
Jakaa
Kopioitu leikepöydälle
a+b=9 ab=-10
Jos haluat ratkaista kaavan, kerroin x^{2}+9x-10 käyttämällä kaavaa x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
-1,10 -2,5
Koska ab on negatiivinen, a ja b vastakkaisen merkit. Koska a+b on positiivinen, positiivisen luvun absoluuttinen arvo on suurempi kuin negatiivisen. Luettele kaikki tällaisia esimerkiksi tuote -10.
-1+10=9 -2+5=3
Laske kunkin parin summa.
a=-1 b=10
Ratkaisu on pari, joka antaa summa 9.
\left(x-1\right)\left(x+10\right)
Kirjoita tekijöihin jaettu lauseke \left(x+a\right)\left(x+b\right) uudelleen käyttämällä saatuja arvoja.
x=1 x=-10
Voit etsiä kaava ratkaisuja, ratkaista x-1=0 ja x+10=0.
a+b=9 ab=1\left(-10\right)=-10
Ratkaise yhtälö jakamalla vasen puoli tekijöihin ryhmittelyn avulla. Vasen puoli on ensin kirjoitettava uudelleen muotoon x^{2}+ax+bx-10. Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
-1,10 -2,5
Koska ab on negatiivinen, a ja b vastakkaisen merkit. Koska a+b on positiivinen, positiivisen luvun absoluuttinen arvo on suurempi kuin negatiivisen. Luettele kaikki tällaisia esimerkiksi tuote -10.
-1+10=9 -2+5=3
Laske kunkin parin summa.
a=-1 b=10
Ratkaisu on pari, joka antaa summa 9.
\left(x^{2}-x\right)+\left(10x-10\right)
Kirjoita \left(x^{2}-x\right)+\left(10x-10\right) uudelleen muodossa x^{2}+9x-10.
x\left(x-1\right)+10\left(x-1\right)
Jaa x toisessa ryhmässä ensimmäisessä ja 10.
\left(x-1\right)\left(x+10\right)
Jaa yleinen termi x-1 käyttämällä osittelu lain mukaisesti-ominaisuutta.
x=1 x=-10
Voit etsiä kaava ratkaisuja, ratkaista x-1=0 ja x+10=0.
x^{2}+9x-10=0
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-9±\sqrt{9^{2}-4\left(-10\right)}}{2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 1, b luvulla 9 ja c luvulla -10 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\left(-10\right)}}{2}
Korota 9 neliöön.
x=\frac{-9±\sqrt{81+40}}{2}
Kerro -4 ja -10.
x=\frac{-9±\sqrt{121}}{2}
Lisää 81 lukuun 40.
x=\frac{-9±11}{2}
Ota luvun 121 neliöjuuri.
x=\frac{2}{2}
Ratkaise nyt yhtälö x=\frac{-9±11}{2}, kun ± on plusmerkkinen. Lisää -9 lukuun 11.
x=1
Jaa 2 luvulla 2.
x=-\frac{20}{2}
Ratkaise nyt yhtälö x=\frac{-9±11}{2}, kun ± on miinusmerkkinen. Vähennä 11 luvusta -9.
x=-10
Jaa -20 luvulla 2.
x=1 x=-10
Yhtälö on nyt ratkaistu.
x^{2}+9x-10=0
Tällaiset toisen asteen yhtälöt voidaan ratkaista neliöksi täydentämällä. Neliöksi täydentäminen vaatii, että yhtälö on muodossa x^{2}+bx=c.
x^{2}+9x-10-\left(-10\right)=-\left(-10\right)
Lisää 10 yhtälön kummallekin puolelle.
x^{2}+9x=-\left(-10\right)
Kun luku -10 vähennetään itsestään, tulokseksi jää 0.
x^{2}+9x=10
Vähennä -10 luvusta 0.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=10+\left(\frac{9}{2}\right)^{2}
Jaa 9 (x-termin kerroin) 2:lla, jolloin saadaan \frac{9}{2}. Lisää sitten \frac{9}{2}:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
x^{2}+9x+\frac{81}{4}=10+\frac{81}{4}
Korota \frac{9}{2} neliöön korottamalla sekä osoittaja että nimittäjä neliöön.
x^{2}+9x+\frac{81}{4}=\frac{121}{4}
Lisää 10 lukuun \frac{81}{4}.
\left(x+\frac{9}{2}\right)^{2}=\frac{121}{4}
Jaa x^{2}+9x+\frac{81}{4} tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Ota neliöjuuri yhtälön molemmilta puolilta.
x+\frac{9}{2}=\frac{11}{2} x+\frac{9}{2}=-\frac{11}{2}
Sievennä.
x=1 x=-10
Vähennä \frac{9}{2} yhtälön molemmilta puolilta.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}