Jaa tekijöihin
\left(x-\frac{-\sqrt{61}-7}{2}\right)\left(x-\frac{\sqrt{61}-7}{2}\right)
Laske
x^{2}+7x-3
Kuvaaja
Jakaa
Kopioitu leikepöydälle
x^{2}+7x-3=0
Toisen asteen polynomi voidaan jakaa tekijöihin käyttämällä muunnosta ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), jossa x_{1} ja x_{2} ovat toisen asteen yhtälön ax^{2}+bx+c=0 ratkaisuja.
x=\frac{-7±\sqrt{7^{2}-4\left(-3\right)}}{2}
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-7±\sqrt{49-4\left(-3\right)}}{2}
Korota 7 neliöön.
x=\frac{-7±\sqrt{49+12}}{2}
Kerro -4 ja -3.
x=\frac{-7±\sqrt{61}}{2}
Lisää 49 lukuun 12.
x=\frac{\sqrt{61}-7}{2}
Ratkaise nyt yhtälö x=\frac{-7±\sqrt{61}}{2}, kun ± on plusmerkkinen. Lisää -7 lukuun \sqrt{61}.
x=\frac{-\sqrt{61}-7}{2}
Ratkaise nyt yhtälö x=\frac{-7±\sqrt{61}}{2}, kun ± on miinusmerkkinen. Vähennä \sqrt{61} luvusta -7.
x^{2}+7x-3=\left(x-\frac{\sqrt{61}-7}{2}\right)\left(x-\frac{-\sqrt{61}-7}{2}\right)
Jaa alkuperäinen lauseke tekijöihin yhtälön ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) avulla. Korvaa \frac{-7+\sqrt{61}}{2} kohteella x_{1} ja \frac{-7-\sqrt{61}}{2} kohteella x_{2}.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}