Ratkaise muuttujan x suhteen
x=-4
x=-3
Kuvaaja
Tietokilpailu
Quadratic Equation
x ^ { 2 } + 7 x + 12 = 0
Jakaa
Kopioitu leikepöydälle
a+b=7 ab=12
Voit ratkaista yhtälön jakamalla lausekkeen x^{2}+7x+12 tekijöihin käyttämällä kaavaa x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Jos haluat etsiä a ja b, määritä järjestelmä, joka voidaan ratkaista.
1,12 2,6 3,4
Koska ab on positiivinen, a ja b on sama merkki. Koska a+b on myönteinen, a ja b ovat molemmat myönteisiä. Luettele kaikki tällaiset kokonaislukuparit, joiden tulona on 12.
1+12=13 2+6=8 3+4=7
Laske kunkin parin summa.
a=3 b=4
Ratkaisu on pari, jonka summa on 7.
\left(x+3\right)\left(x+4\right)
Kirjoita tekijöihin jaettu lauseke \left(x+a\right)\left(x+b\right) uudelleen käyttämällä saatuja arvoja.
x=-3 x=-4
Löydät yhtälön ratkaisut ratkaisemalla yhtälöt x+3=0 ja x+4=0.
a+b=7 ab=1\times 12=12
Ratkaise yhtälö jakamalla vasen puoli tekijöihin ryhmittelyn avulla. Vasen puoli on ensin kirjoitettava uudelleen muotoon x^{2}+ax+bx+12. Jos haluat etsiä a ja b, määritä järjestelmä, joka voidaan ratkaista.
1,12 2,6 3,4
Koska ab on positiivinen, a ja b on sama merkki. Koska a+b on myönteinen, a ja b ovat molemmat myönteisiä. Luettele kaikki tällaiset kokonaislukuparit, joiden tulona on 12.
1+12=13 2+6=8 3+4=7
Laske kunkin parin summa.
a=3 b=4
Ratkaisu on pari, jonka summa on 7.
\left(x^{2}+3x\right)+\left(4x+12\right)
Kirjoita \left(x^{2}+3x\right)+\left(4x+12\right) uudelleen muodossa x^{2}+7x+12.
x\left(x+3\right)+4\left(x+3\right)
Ota x tekijäksi ensimmäisessä ja 4 toisessa ryhmässä.
\left(x+3\right)\left(x+4\right)
Ota tekijäksi yhteinen termi x+3 käyttämällä osittelulakia.
x=-3 x=-4
Löydät yhtälön ratkaisut ratkaisemalla yhtälöt x+3=0 ja x+4=0.
x^{2}+7x+12=0
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-7±\sqrt{7^{2}-4\times 12}}{2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 1, b luvulla 7 ja c luvulla 12 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 12}}{2}
Korota 7 neliöön.
x=\frac{-7±\sqrt{49-48}}{2}
Kerro -4 ja 12.
x=\frac{-7±\sqrt{1}}{2}
Lisää 49 lukuun -48.
x=\frac{-7±1}{2}
Ota luvun 1 neliöjuuri.
x=-\frac{6}{2}
Ratkaise nyt yhtälö x=\frac{-7±1}{2}, kun ± on plusmerkkinen. Lisää -7 lukuun 1.
x=-3
Jaa -6 luvulla 2.
x=-\frac{8}{2}
Ratkaise nyt yhtälö x=\frac{-7±1}{2}, kun ± on miinusmerkkinen. Vähennä 1 luvusta -7.
x=-4
Jaa -8 luvulla 2.
x=-3 x=-4
Yhtälö on nyt ratkaistu.
x^{2}+7x+12=0
Tällaiset toisen asteen yhtälöt voidaan ratkaista neliöksi täydentämällä. Neliöksi täydentäminen vaatii, että yhtälö on muodossa x^{2}+bx=c.
x^{2}+7x+12-12=-12
Vähennä 12 yhtälön molemmilta puolilta.
x^{2}+7x=-12
Kun luku 12 vähennetään itsestään, tulokseksi jää 0.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=-12+\left(\frac{7}{2}\right)^{2}
Jaa 7 (x-termin kerroin) 2:lla, jolloin saadaan \frac{7}{2}. Lisää sitten \frac{7}{2}:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
x^{2}+7x+\frac{49}{4}=-12+\frac{49}{4}
Korota \frac{7}{2} neliöön korottamalla sekä osoittaja että nimittäjä neliöön.
x^{2}+7x+\frac{49}{4}=\frac{1}{4}
Lisää -12 lukuun \frac{49}{4}.
\left(x+\frac{7}{2}\right)^{2}=\frac{1}{4}
Jaa x^{2}+7x+\frac{49}{4} tekijöihin. Yleisesti ottaen, jos x^{2}+bx+c on täydellinen neliö, se voidaan aina jakaa tekijöihin seuraavasti: \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Ota neliöjuuri yhtälön molemmilta puolilta.
x+\frac{7}{2}=\frac{1}{2} x+\frac{7}{2}=-\frac{1}{2}
Sievennä.
x=-3 x=-4
Vähennä \frac{7}{2} yhtälön molemmilta puolilta.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}