Hyppää pääsisältöön
Jaa tekijöihin
Tick mark Image
Laske
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

x\left(x+6\right)
Jaa tekijöihin x:n suhteen.
x^{2}+6x=0
Toisen asteen polynomi voidaan jakaa tekijöihin käyttämällä muunnosta ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), jossa x_{1} ja x_{2} ovat toisen asteen yhtälön ax^{2}+bx+c=0 ratkaisuja.
x=\frac{-6±\sqrt{6^{2}}}{2}
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-6±6}{2}
Ota luvun 6^{2} neliöjuuri.
x=\frac{0}{2}
Ratkaise nyt yhtälö x=\frac{-6±6}{2}, kun ± on plusmerkkinen. Lisää -6 lukuun 6.
x=0
Jaa 0 luvulla 2.
x=-\frac{12}{2}
Ratkaise nyt yhtälö x=\frac{-6±6}{2}, kun ± on miinusmerkkinen. Vähennä 6 luvusta -6.
x=-6
Jaa -12 luvulla 2.
x^{2}+6x=x\left(x-\left(-6\right)\right)
Jaa alkuperäinen lauseke tekijöihin yhtälön ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) avulla. Korvaa 0 kohteella x_{1} ja -6 kohteella x_{2}.
x^{2}+6x=x\left(x+6\right)
Sievennä kaavan p-\left(-q\right) kaikki lausekkeet muotoon p+q.