Hyppää pääsisältöön
Ratkaise muuttujan x suhteen
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

a+b=2 ab=1
Voit ratkaista yhtälön jakamalla lausekkeen x^{2}+2x+1 tekijöihin käyttämällä kaavaa x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Jos haluat etsiä a ja b, määritä järjestelmä, joka voidaan ratkaista.
a=1 b=1
Koska ab on positiivinen, a ja b on sama merkki. Koska a+b on myönteinen, a ja b ovat molemmat myönteisiä. Ainoa tällainen pari on järjestelmäratkaisu.
\left(x+1\right)\left(x+1\right)
Kirjoita tekijöihin jaettu lauseke \left(x+a\right)\left(x+b\right) uudelleen käyttämällä saatuja arvoja.
\left(x+1\right)^{2}
Kirjoita uudelleen binomin neliönä.
x=-1
Löydät yhtälön ratkaisun ratkaisemalla yhtälön x+1=0.
a+b=2 ab=1\times 1=1
Ratkaise yhtälö jakamalla vasen puoli tekijöihin ryhmittelyn avulla. Vasen puoli on ensin kirjoitettava uudelleen muotoon x^{2}+ax+bx+1. Jos haluat etsiä a ja b, määritä järjestelmä, joka voidaan ratkaista.
a=1 b=1
Koska ab on positiivinen, a ja b on sama merkki. Koska a+b on myönteinen, a ja b ovat molemmat myönteisiä. Ainoa tällainen pari on järjestelmäratkaisu.
\left(x^{2}+x\right)+\left(x+1\right)
Kirjoita \left(x^{2}+x\right)+\left(x+1\right) uudelleen muodossa x^{2}+2x+1.
x\left(x+1\right)+x+1
Ota x tekijäksi lausekkeessa x^{2}+x.
\left(x+1\right)\left(x+1\right)
Ota tekijäksi yhteinen termi x+1 käyttämällä osittelulakia.
\left(x+1\right)^{2}
Kirjoita uudelleen binomin neliönä.
x=-1
Löydät yhtälön ratkaisun ratkaisemalla yhtälön x+1=0.
x^{2}+2x+1=0
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-2±\sqrt{2^{2}-4}}{2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 1, b luvulla 2 ja c luvulla 1 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4}}{2}
Korota 2 neliöön.
x=\frac{-2±\sqrt{0}}{2}
Lisää 4 lukuun -4.
x=-\frac{2}{2}
Ota luvun 0 neliöjuuri.
x=-1
Jaa -2 luvulla 2.
\left(x+1\right)^{2}=0
Jaa x^{2}+2x+1 tekijöihin. Yleisesti ottaen, jos x^{2}+bx+c on täydellinen neliö, se voidaan aina jakaa tekijöihin seuraavasti: \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{0}
Ota neliöjuuri yhtälön molemmilta puolilta.
x+1=0 x+1=0
Sievennä.
x=-1 x=-1
Vähennä 1 yhtälön molemmilta puolilta.
x=-1
Yhtälö on nyt ratkaistu. Ratkaisut ovat samat.