Jaa tekijöihin
\left(x-a\right)\left(x+a\right)\left(x^{2}+a^{2}\right)\left(x^{2}-ax+a^{2}\right)\left(x^{2}+ax+a^{2}\right)\left(x^{4}-a^{2}x^{2}+a^{4}\right)
Laske
\left(x^{4}-a^{4}\right)\left(x^{4}-\left(ax\right)^{2}+a^{4}\right)\left(-\left(ax\right)^{2}+\left(x^{2}+a^{2}\right)^{2}\right)
Kuvaaja
Jakaa
Kopioitu leikepöydälle
\left(x^{6}-a^{6}\right)\left(x^{6}+a^{6}\right)
Kirjoita \left(x^{6}\right)^{2}-\left(a^{6}\right)^{2} uudelleen muodossa x^{12}-a^{12}. Neliöiden erotus voidaan jakaa tekijöihin käyttämällä sääntöä: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(x^{3}-a^{3}\right)\left(x^{3}+a^{3}\right)
Tarkastele lauseketta x^{6}-a^{6}. Kirjoita \left(x^{3}\right)^{2}-\left(a^{3}\right)^{2} uudelleen muodossa x^{6}-a^{6}. Neliöiden erotus voidaan jakaa tekijöihin käyttämällä sääntöä: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(x-a\right)\left(x^{2}+ax+a^{2}\right)
Tarkastele lauseketta x^{3}-a^{3}. Kuutioiden erotus voidaan laskea mukaan säännön avulla: p^{3}-q^{3}=\left(p-q\right)\left(p^{2}+pq+q^{2}\right).
\left(x+a\right)\left(x^{2}-ax+a^{2}\right)
Tarkastele lauseketta x^{3}+a^{3}. Kuutioiden summa voidaan laskea mukaan säännön avulla: p^{3}+q^{3}=\left(p+q\right)\left(p^{2}-pq+q^{2}\right).
\left(x^{2}+a^{2}\right)\left(x^{4}-a^{2}x^{2}+a^{4}\right)
Tarkastele lauseketta x^{6}+a^{6}. Kirjoita \left(x^{2}\right)^{3}+\left(a^{2}\right)^{3} uudelleen muodossa x^{6}+a^{6}. Kuutioiden summa voidaan laskea mukaan säännön avulla: p^{3}+q^{3}=\left(p+q\right)\left(p^{2}-pq+q^{2}\right).
\left(x-a\right)\left(x+a\right)\left(x^{2}-ax+a^{2}\right)\left(x^{2}+ax+a^{2}\right)\left(x^{4}-a^{2}x^{2}+a^{4}\right)\left(x^{2}+a^{2}\right)
Kirjoita koko tekijöihin jaettu lauseke uudelleen.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}