Ratkaise muuttujan x suhteen
x=-1
x=0
Kuvaaja
Jakaa
Kopioitu leikepöydälle
x+x^{2}+3-3=0
Vähennä 3 molemmilta puolilta.
x+x^{2}=0
Vähennä 3 luvusta 3 saadaksesi tuloksen 0.
x\left(1+x\right)=0
Jaa tekijöihin x:n suhteen.
x=0 x=-1
Voit etsiä kaava ratkaisuja, ratkaista x=0 ja 1+x=0.
x^{2}+x+3=3
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x^{2}+x+3-3=3-3
Vähennä 3 yhtälön molemmilta puolilta.
x^{2}+x+3-3=0
Kun luku 3 vähennetään itsestään, tulokseksi jää 0.
x^{2}+x=0
Vähennä 3 luvusta 3.
x=\frac{-1±\sqrt{1^{2}}}{2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 1, b luvulla 1 ja c luvulla 0 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±1}{2}
Ota luvun 1^{2} neliöjuuri.
x=\frac{0}{2}
Ratkaise nyt yhtälö x=\frac{-1±1}{2}, kun ± on plusmerkkinen. Lisää -1 lukuun 1.
x=0
Jaa 0 luvulla 2.
x=-\frac{2}{2}
Ratkaise nyt yhtälö x=\frac{-1±1}{2}, kun ± on miinusmerkkinen. Vähennä 1 luvusta -1.
x=-1
Jaa -2 luvulla 2.
x=0 x=-1
Yhtälö on nyt ratkaistu.
x+x^{2}+3-3=0
Vähennä 3 molemmilta puolilta.
x+x^{2}=0
Vähennä 3 luvusta 3 saadaksesi tuloksen 0.
x^{2}+x=0
Tällaiset toisen asteen yhtälöt voidaan ratkaista neliöksi täydentämällä. Neliöksi täydentäminen vaatii, että yhtälö on muodossa x^{2}+bx=c.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{2}
Jaa 1 (x-termin kerroin) 2:lla, jolloin saadaan \frac{1}{2}. Lisää sitten \frac{1}{2}:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
x^{2}+x+\frac{1}{4}=\frac{1}{4}
Korota \frac{1}{2} neliöön korottamalla sekä osoittaja että nimittäjä neliöön.
\left(x+\frac{1}{2}\right)^{2}=\frac{1}{4}
Jaa x^{2}+x+\frac{1}{4} tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Ota neliöjuuri yhtälön molemmilta puolilta.
x+\frac{1}{2}=\frac{1}{2} x+\frac{1}{2}=-\frac{1}{2}
Sievennä.
x=0 x=-1
Vähennä \frac{1}{2} yhtälön molemmilta puolilta.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}