Hyppää pääsisältöön
Derivoi muuttujan w suhteen
Tick mark Image
Laske
Tick mark Image

Samanlaisia ongelmia verkkohausta

Jakaa

w^{\frac{4}{7}}\frac{\mathrm{d}}{\mathrm{d}w}(\sqrt{w})+\sqrt{w}\frac{\mathrm{d}}{\mathrm{d}w}(w^{\frac{4}{7}})
Kun tarkastellaan kahta derivoituvaa funktiota, funktioiden tulon derivaatta on ensimmäinen funktio kertaa toisen funktion derivaatta plus toinen funktio kertaa ensimmäisen funktion derivaatta.
w^{\frac{4}{7}}\times \frac{1}{2}w^{\frac{1}{2}-1}+\sqrt{w}\times \frac{4}{7}w^{\frac{4}{7}-1}
Polynomin derivaatta on sen termien derivaattojen summa. Vakiotermin derivaatta on 0. Lausekkeen ax^{n} derivaatta on nax^{n-1}.
w^{\frac{4}{7}}\times \frac{1}{2}w^{-\frac{1}{2}}+\sqrt{w}\times \frac{4}{7}w^{-\frac{3}{7}}
Sievennä.
\frac{1}{2}w^{\frac{4}{7}-\frac{1}{2}}+\frac{4}{7}w^{\frac{1}{2}-\frac{3}{7}}
Jos haluat kertoa samankantaiset potenssit, laske niiden eksponentit yhteen.
\frac{1}{2}\sqrt[14]{w}+\frac{4}{7}\sqrt[14]{w}
Sievennä.