Ratkaise muuttujan a suhteen
\left\{\begin{matrix}a=-\frac{r-v}{t}\text{, }&t\neq 0\\a\in \mathrm{R}\text{, }&v=r\text{ and }t=0\end{matrix}\right,
Ratkaise muuttujan r suhteen
r=v-at
Jakaa
Kopioitu leikepöydälle
r+at=v
Vaihda puolia niin, että kaikki muuttujat ovat vasemmalla puolella.
at=v-r
Vähennä r molemmilta puolilta.
ta=v-r
Yhtälö on perusmuodossa.
\frac{ta}{t}=\frac{v-r}{t}
Jaa molemmat puolet luvulla t.
a=\frac{v-r}{t}
Jakaminen luvulla t kumoaa kertomisen luvulla t.
r+at=v
Vaihda puolia niin, että kaikki muuttujat ovat vasemmalla puolella.
r=v-at
Vähennä at molemmilta puolilta.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}