Laske
-\frac{2nx^{6}}{y}
Lavenna
-\frac{2nx^{6}}{y}
Tietokilpailu
Algebra
n : \frac { ( - x ^ { 2 } y ^ { 0 } ) ^ { - 3 } } { ( - 2 x ) ( - x y ) ^ { - 1 } }
Jakaa
Kopioitu leikepöydälle
\frac{n\left(-2\right)x\left(\left(-x\right)y\right)^{-1}}{\left(\left(-x^{2}\right)y^{0}\right)^{-3}}
Jaa n luvulla \frac{\left(\left(-x^{2}\right)y^{0}\right)^{-3}}{-2x\left(\left(-x\right)y\right)^{-1}} kertomalla n luvun \frac{\left(\left(-x^{2}\right)y^{0}\right)^{-3}}{-2x\left(\left(-x\right)y\right)^{-1}} käänteisluvulla.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(\left(-x^{2}\right)y^{0}\right)^{-3}}
Lavenna \left(\left(-x\right)y\right)^{-1}.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(\left(-x^{2}\right)\times 1\right)^{-3}}
Laske y potenssiin 0, jolloin ratkaisuksi tulee 1.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}\times 1^{-3}}
Lavenna \left(\left(-x^{2}\right)\times 1\right)^{-3}.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}\times 1}
Laske 1 potenssiin -3, jolloin ratkaisuksi tulee 1.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}}
Supista 1 sekä osoittajasta että nimittäjästä.
\frac{n\left(-2\right)x\left(-1\right)^{-1}x^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}}
Lavenna \left(-x\right)^{-1}.
\frac{n\left(-2\right)x\left(-1\right)x^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}}
Laske -1 potenssiin -1, jolloin ratkaisuksi tulee -1.
\frac{n\times 2xx^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}}
Kerro -2 ja -1, niin saadaan 2.
\frac{n\times 2y^{-1}}{\left(-x^{2}\right)^{-3}}
Kerro x ja x^{-1}, niin saadaan 1.
\frac{n\times 2y^{-1}}{\left(-1\right)^{-3}\left(x^{2}\right)^{-3}}
Lavenna \left(-x^{2}\right)^{-3}.
\frac{n\times 2y^{-1}}{\left(-1\right)^{-3}x^{-6}}
Jos haluat korottaa potenssin uuteen potenssiin, kerro eksponentit. Kerro 2 ja -3 keskenään saadaksesi -6.
\frac{n\times 2y^{-1}}{-x^{-6}}
Laske -1 potenssiin -3, jolloin ratkaisuksi tulee -1.
\frac{n\left(-2\right)y^{-1}}{x^{-6}}
Supista -1 sekä osoittajasta että nimittäjästä.
\frac{n\left(-2\right)x\left(\left(-x\right)y\right)^{-1}}{\left(\left(-x^{2}\right)y^{0}\right)^{-3}}
Jaa n luvulla \frac{\left(\left(-x^{2}\right)y^{0}\right)^{-3}}{-2x\left(\left(-x\right)y\right)^{-1}} kertomalla n luvun \frac{\left(\left(-x^{2}\right)y^{0}\right)^{-3}}{-2x\left(\left(-x\right)y\right)^{-1}} käänteisluvulla.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(\left(-x^{2}\right)y^{0}\right)^{-3}}
Lavenna \left(\left(-x\right)y\right)^{-1}.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(\left(-x^{2}\right)\times 1\right)^{-3}}
Laske y potenssiin 0, jolloin ratkaisuksi tulee 1.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}\times 1^{-3}}
Lavenna \left(\left(-x^{2}\right)\times 1\right)^{-3}.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}\times 1}
Laske 1 potenssiin -3, jolloin ratkaisuksi tulee 1.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}}
Supista 1 sekä osoittajasta että nimittäjästä.
\frac{n\left(-2\right)x\left(-1\right)^{-1}x^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}}
Lavenna \left(-x\right)^{-1}.
\frac{n\left(-2\right)x\left(-1\right)x^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}}
Laske -1 potenssiin -1, jolloin ratkaisuksi tulee -1.
\frac{n\times 2xx^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}}
Kerro -2 ja -1, niin saadaan 2.
\frac{n\times 2y^{-1}}{\left(-x^{2}\right)^{-3}}
Kerro x ja x^{-1}, niin saadaan 1.
\frac{n\times 2y^{-1}}{\left(-1\right)^{-3}\left(x^{2}\right)^{-3}}
Lavenna \left(-x^{2}\right)^{-3}.
\frac{n\times 2y^{-1}}{\left(-1\right)^{-3}x^{-6}}
Jos haluat korottaa potenssin uuteen potenssiin, kerro eksponentit. Kerro 2 ja -3 keskenään saadaksesi -6.
\frac{n\times 2y^{-1}}{-x^{-6}}
Laske -1 potenssiin -3, jolloin ratkaisuksi tulee -1.
\frac{n\left(-2\right)y^{-1}}{x^{-6}}
Supista -1 sekä osoittajasta että nimittäjästä.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}