Hyppää pääsisältöön
Jaa tekijöihin
Tick mark Image
Laske
Tick mark Image

Samanlaisia ongelmia verkkohausta

Jakaa

m\left(m-3\right)
Jaa tekijöihin m:n suhteen.
m^{2}-3m=0
Toisen asteen polynomi voidaan jakaa tekijöihin käyttämällä muunnosta ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), jossa x_{1} ja x_{2} ovat toisen asteen yhtälön ax^{2}+bx+c=0 ratkaisuja.
m=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}}}{2}
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
m=\frac{-\left(-3\right)±3}{2}
Ota luvun \left(-3\right)^{2} neliöjuuri.
m=\frac{3±3}{2}
Luvun -3 vastaluku on 3.
m=\frac{6}{2}
Ratkaise nyt yhtälö m=\frac{3±3}{2}, kun ± on plusmerkkinen. Lisää 3 lukuun 3.
m=3
Jaa 6 luvulla 2.
m=\frac{0}{2}
Ratkaise nyt yhtälö m=\frac{3±3}{2}, kun ± on miinusmerkkinen. Vähennä 3 luvusta 3.
m=0
Jaa 0 luvulla 2.
m^{2}-3m=\left(m-3\right)m
Jaa alkuperäinen lauseke tekijöihin yhtälön ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) avulla. Korvaa 3 kohteella x_{1} ja 0 kohteella x_{2}.