Hyppää pääsisältöön
Jaa tekijöihin
Tick mark Image
Laske
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

a+b=-8 ab=1\times 7=7
Jaa lauseke tekijöihin ryhmittelemällä. Lauseke täytyy kirjoittaa ensin uudelleen muodossa x^{2}+ax+bx+7. Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
a=-7 b=-1
Koska ab on positiivinen, a ja b on sama merkki. Koska a+b on negatiivinen, a ja b ovat molemmat negatiivisia. Ainoa tällainen pari on järjestelmäratkaisu.
\left(x^{2}-7x\right)+\left(-x+7\right)
Kirjoita \left(x^{2}-7x\right)+\left(-x+7\right) uudelleen muodossa x^{2}-8x+7.
x\left(x-7\right)-\left(x-7\right)
Jaa x toisessa ryhmässä ensimmäisessä ja -1.
\left(x-7\right)\left(x-1\right)
Jaa yleinen termi x-7 käyttämällä osittelu lain mukaisesti-ominaisuutta.
x^{2}-8x+7=0
Toisen asteen polynomi voidaan jakaa tekijöihin käyttämällä muunnosta ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), jossa x_{1} ja x_{2} ovat toisen asteen yhtälön ax^{2}+bx+c=0 ratkaisuja.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 7}}{2}
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 7}}{2}
Korota -8 neliöön.
x=\frac{-\left(-8\right)±\sqrt{64-28}}{2}
Kerro -4 ja 7.
x=\frac{-\left(-8\right)±\sqrt{36}}{2}
Lisää 64 lukuun -28.
x=\frac{-\left(-8\right)±6}{2}
Ota luvun 36 neliöjuuri.
x=\frac{8±6}{2}
Luvun -8 vastaluku on 8.
x=\frac{14}{2}
Ratkaise nyt yhtälö x=\frac{8±6}{2}, kun ± on plusmerkkinen. Lisää 8 lukuun 6.
x=7
Jaa 14 luvulla 2.
x=\frac{2}{2}
Ratkaise nyt yhtälö x=\frac{8±6}{2}, kun ± on miinusmerkkinen. Vähennä 6 luvusta 8.
x=1
Jaa 2 luvulla 2.
x^{2}-8x+7=\left(x-7\right)\left(x-1\right)
Jaa alkuperäinen lauseke tekijöihin yhtälön ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) avulla. Korvaa 7 kohteella x_{1} ja 1 kohteella x_{2}.