Hyppää pääsisältöön
Jaa tekijöihin
Tick mark Image
Laske
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

a+b=-5 ab=1\left(-36\right)=-36
Jaa lauseke tekijöihin ryhmittelemällä. Lauseke täytyy kirjoittaa ensin uudelleen muodossa x^{2}+ax+bx-36. Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
1,-36 2,-18 3,-12 4,-9 6,-6
Koska ab on negatiivinen, a ja b vastakkaisen merkit. Koska a+b on negatiivinen, negatiivinen luku on suurempi kuin positiivinen arvo. Luettele kaikki tällaisia esimerkiksi tuote -36.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
Laske kunkin parin summa.
a=-9 b=4
Ratkaisu on pari, joka antaa summa -5.
\left(x^{2}-9x\right)+\left(4x-36\right)
Kirjoita \left(x^{2}-9x\right)+\left(4x-36\right) uudelleen muodossa x^{2}-5x-36.
x\left(x-9\right)+4\left(x-9\right)
Jaa x toisessa ryhmässä ensimmäisessä ja 4.
\left(x-9\right)\left(x+4\right)
Jaa yleinen termi x-9 käyttämällä osittelu lain mukaisesti-ominaisuutta.
x^{2}-5x-36=0
Toisen asteen polynomi voidaan jakaa tekijöihin käyttämällä muunnosta ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), jossa x_{1} ja x_{2} ovat toisen asteen yhtälön ax^{2}+bx+c=0 ratkaisuja.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-36\right)}}{2}
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-36\right)}}{2}
Korota -5 neliöön.
x=\frac{-\left(-5\right)±\sqrt{25+144}}{2}
Kerro -4 ja -36.
x=\frac{-\left(-5\right)±\sqrt{169}}{2}
Lisää 25 lukuun 144.
x=\frac{-\left(-5\right)±13}{2}
Ota luvun 169 neliöjuuri.
x=\frac{5±13}{2}
Luvun -5 vastaluku on 5.
x=\frac{18}{2}
Ratkaise nyt yhtälö x=\frac{5±13}{2}, kun ± on plusmerkkinen. Lisää 5 lukuun 13.
x=9
Jaa 18 luvulla 2.
x=-\frac{8}{2}
Ratkaise nyt yhtälö x=\frac{5±13}{2}, kun ± on miinusmerkkinen. Vähennä 13 luvusta 5.
x=-4
Jaa -8 luvulla 2.
x^{2}-5x-36=\left(x-9\right)\left(x-\left(-4\right)\right)
Jaa alkuperäinen lauseke tekijöihin yhtälön ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) avulla. Korvaa 9 kohteella x_{1} ja -4 kohteella x_{2}.
x^{2}-5x-36=\left(x-9\right)\left(x+4\right)
Sievennä kaavan p-\left(-q\right) kaikki lausekkeet muotoon p+q.