Jaa tekijöihin
\left(2-x\right)\left(x-8\right)
Laske
\left(2-x\right)\left(x-8\right)
Kuvaaja
Tietokilpailu
Polynomial
f ( x ) = - x ^ { 2 } + 10 x - 16
Jakaa
Kopioitu leikepöydälle
a+b=10 ab=-\left(-16\right)=16
Jaa lauseke tekijöihin ryhmittelemällä. Lauseke täytyy kirjoittaa ensin uudelleen muodossa -x^{2}+ax+bx-16. Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
1,16 2,8 4,4
Koska ab on positiivinen, a ja b on sama merkki. Koska a+b on positiivinen, a ja b ovat molemmat positiivisia. Luettele kaikki tällaisia esimerkiksi tuote 16.
1+16=17 2+8=10 4+4=8
Laske kunkin parin summa.
a=8 b=2
Ratkaisu on pari, joka antaa summa 10.
\left(-x^{2}+8x\right)+\left(2x-16\right)
Kirjoita \left(-x^{2}+8x\right)+\left(2x-16\right) uudelleen muodossa -x^{2}+10x-16.
-x\left(x-8\right)+2\left(x-8\right)
Jaa -x toisessa ryhmässä ensimmäisessä ja 2.
\left(x-8\right)\left(-x+2\right)
Jaa yleinen termi x-8 käyttämällä osittelu lain mukaisesti-ominaisuutta.
-x^{2}+10x-16=0
Toisen asteen polynomi voidaan jakaa tekijöihin käyttämällä muunnosta ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), jossa x_{1} ja x_{2} ovat toisen asteen yhtälön ax^{2}+bx+c=0 ratkaisuja.
x=\frac{-10±\sqrt{10^{2}-4\left(-1\right)\left(-16\right)}}{2\left(-1\right)}
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-10±\sqrt{100-4\left(-1\right)\left(-16\right)}}{2\left(-1\right)}
Korota 10 neliöön.
x=\frac{-10±\sqrt{100+4\left(-16\right)}}{2\left(-1\right)}
Kerro -4 ja -1.
x=\frac{-10±\sqrt{100-64}}{2\left(-1\right)}
Kerro 4 ja -16.
x=\frac{-10±\sqrt{36}}{2\left(-1\right)}
Lisää 100 lukuun -64.
x=\frac{-10±6}{2\left(-1\right)}
Ota luvun 36 neliöjuuri.
x=\frac{-10±6}{-2}
Kerro 2 ja -1.
x=-\frac{4}{-2}
Ratkaise nyt yhtälö x=\frac{-10±6}{-2}, kun ± on plusmerkkinen. Lisää -10 lukuun 6.
x=2
Jaa -4 luvulla -2.
x=-\frac{16}{-2}
Ratkaise nyt yhtälö x=\frac{-10±6}{-2}, kun ± on miinusmerkkinen. Vähennä 6 luvusta -10.
x=8
Jaa -16 luvulla -2.
-x^{2}+10x-16=-\left(x-2\right)\left(x-8\right)
Jaa alkuperäinen lauseke tekijöihin yhtälön ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) avulla. Korvaa 2 kohteella x_{1} ja 8 kohteella x_{2}.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}