Ratkaise muuttujan κ suhteen
\left\{\begin{matrix}\kappa =\frac{7-e^{k-\lambda -1}-e^{\lambda +2k}}{3}\text{, }&-\frac{e^{2k+\lambda }}{3}-\frac{e^{k-\lambda -1}}{3}+\frac{\lambda }{2}+\frac{11}{6}\geq 0\text{ and }-\frac{e^{2k+\lambda }}{3}-\frac{e^{k-\lambda -1}}{3}-\lambda +\frac{1}{3}\geq 0\\\kappa =3-e^{k-\lambda -1}-e^{\lambda +2k}-2\lambda \text{, }&-e^{2k+\lambda }-e^{k-\lambda -1}-\frac{3\lambda }{2}+\frac{5}{2}\geq 0\text{ and }1-e^{k-\lambda -1}-e^{\lambda +2k}-3\lambda \leq 0\\\kappa =-2\lambda +e^{\lambda +2k}+e^{k-\lambda -1}-5\text{, }&-3\lambda +e^{\lambda +2k}+e^{k-\lambda -1}-7\geq 0\text{ and }e^{2k+\lambda }+e^{k-\lambda -1}-\frac{3\lambda }{2}-\frac{11}{2}\leq 0\\\kappa =\frac{e^{\lambda +2k}+e^{k-\lambda -1}-1}{3}\text{, }&\frac{e^{2k+\lambda }}{3}+\frac{e^{k-\lambda -1}}{3}+\frac{\lambda }{2}-\frac{5}{6}\leq 0\text{ and }\frac{e^{2k+\lambda }}{3}+\frac{e^{k-\lambda -1}}{3}-\lambda -\frac{7}{3}\leq 0\end{matrix}\right,
Jakaa
Kopioitu leikepöydälle
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}