d h = ( 15 t + 6 ) d t
Ratkaise muuttujan d suhteen
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&h=3t\left(5t+2\right)\end{matrix}\right,
Ratkaise muuttujan h suhteen
\left\{\begin{matrix}\\h=3t\left(5t+2\right)\text{, }&\text{unconditionally}\\h\in \mathrm{R}\text{, }&d=0\end{matrix}\right,
Jakaa
Kopioitu leikepöydälle
dh=\left(15td+6d\right)t
Laske lukujen 15t+6 ja d tulo käyttämällä osittelulakia.
dh=15dt^{2}+6dt
Laske lukujen 15td+6d ja t tulo käyttämällä osittelulakia.
dh-15dt^{2}=6dt
Vähennä 15dt^{2} molemmilta puolilta.
dh-15dt^{2}-6dt=0
Vähennä 6dt molemmilta puolilta.
\left(h-15t^{2}-6t\right)d=0
Yhdistä kaikki termit, jotka sisältävät d:n.
\left(h-6t-15t^{2}\right)d=0
Yhtälö on perusmuodossa.
d=0
Jaa 0 luvulla -15t^{2}-6t+h.
dh=\left(15td+6d\right)t
Laske lukujen 15t+6 ja d tulo käyttämällä osittelulakia.
dh=15dt^{2}+6dt
Laske lukujen 15td+6d ja t tulo käyttämällä osittelulakia.
\frac{dh}{d}=\frac{3dt\left(5t+2\right)}{d}
Jaa molemmat puolet luvulla d.
h=\frac{3dt\left(5t+2\right)}{d}
Jakaminen luvulla d kumoaa kertomisen luvulla d.
h=3t\left(5t+2\right)
Jaa 3dt\left(2+5t\right) luvulla d.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}