Ratkaise muuttujan a suhteen
\left\{\begin{matrix}a=-\frac{P}{\cos(\theta )-1}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =2\pi n_{1}\\a\in \mathrm{R}\text{, }&P=0\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\theta =2\pi n_{1}\end{matrix}\right,
Ratkaise muuttujan P suhteen
P=a\left(-\cos(\theta )+1\right)
Kuvaaja
Jakaa
Kopioitu leikepöydälle
a\left(1-\cos(\theta )\right)=P
Vaihda puolia niin, että kaikki muuttujat ovat vasemmalla puolella.
a-a\cos(\theta )=P
Laske lukujen a ja 1-\cos(\theta ) tulo käyttämällä osittelulakia.
\left(1-\cos(\theta )\right)a=P
Yhdistä kaikki termit, jotka sisältävät a:n.
\left(-\cos(\theta )+1\right)a=P
Yhtälö on perusmuodossa.
\frac{\left(-\cos(\theta )+1\right)a}{-\cos(\theta )+1}=\frac{P}{-\cos(\theta )+1}
Jaa molemmat puolet luvulla 1-\cos(\theta ).
a=\frac{P}{-\cos(\theta )+1}
Jakaminen luvulla 1-\cos(\theta ) kumoaa kertomisen luvulla 1-\cos(\theta ).
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}