Laske
\frac{360150000000000000G_{6674}}{29929}
Derivoi muuttujan G_6674 suhteen
\frac{360150000000000000}{29929} = 12033479234187\frac{17277}{29929} = 12033479234187,578
Jakaa
Kopioitu leikepöydälle
G_{6674}\times \frac{1}{100000000000}\times \frac{70^{2}\times 735\times 10^{22}}{173^{2}}
Laske 10 potenssiin -11, jolloin ratkaisuksi tulee \frac{1}{100000000000}.
G_{6674}\times \frac{1}{100000000000}\times \frac{4900\times 735\times 10^{22}}{173^{2}}
Laske 70 potenssiin 2, jolloin ratkaisuksi tulee 4900.
G_{6674}\times \frac{1}{100000000000}\times \frac{3601500\times 10^{22}}{173^{2}}
Kerro 4900 ja 735, niin saadaan 3601500.
G_{6674}\times \frac{1}{100000000000}\times \frac{3601500\times 10000000000000000000000}{173^{2}}
Laske 10 potenssiin 22, jolloin ratkaisuksi tulee 10000000000000000000000.
G_{6674}\times \frac{1}{100000000000}\times \frac{36015000000000000000000000000}{173^{2}}
Kerro 3601500 ja 10000000000000000000000, niin saadaan 36015000000000000000000000000.
G_{6674}\times \frac{1}{100000000000}\times \frac{36015000000000000000000000000}{29929}
Laske 173 potenssiin 2, jolloin ratkaisuksi tulee 29929.
G_{6674}\times \frac{360150000000000000}{29929}
Kerro \frac{1}{100000000000} ja \frac{36015000000000000000000000000}{29929}, niin saadaan \frac{360150000000000000}{29929}.
\frac{\mathrm{d}}{\mathrm{d}G_{6674}}(G_{6674}\times \frac{1}{100000000000}\times \frac{70^{2}\times 735\times 10^{22}}{173^{2}})
Laske 10 potenssiin -11, jolloin ratkaisuksi tulee \frac{1}{100000000000}.
\frac{\mathrm{d}}{\mathrm{d}G_{6674}}(G_{6674}\times \frac{1}{100000000000}\times \frac{4900\times 735\times 10^{22}}{173^{2}})
Laske 70 potenssiin 2, jolloin ratkaisuksi tulee 4900.
\frac{\mathrm{d}}{\mathrm{d}G_{6674}}(G_{6674}\times \frac{1}{100000000000}\times \frac{3601500\times 10^{22}}{173^{2}})
Kerro 4900 ja 735, niin saadaan 3601500.
\frac{\mathrm{d}}{\mathrm{d}G_{6674}}(G_{6674}\times \frac{1}{100000000000}\times \frac{3601500\times 10000000000000000000000}{173^{2}})
Laske 10 potenssiin 22, jolloin ratkaisuksi tulee 10000000000000000000000.
\frac{\mathrm{d}}{\mathrm{d}G_{6674}}(G_{6674}\times \frac{1}{100000000000}\times \frac{36015000000000000000000000000}{173^{2}})
Kerro 3601500 ja 10000000000000000000000, niin saadaan 36015000000000000000000000000.
\frac{\mathrm{d}}{\mathrm{d}G_{6674}}(G_{6674}\times \frac{1}{100000000000}\times \frac{36015000000000000000000000000}{29929})
Laske 173 potenssiin 2, jolloin ratkaisuksi tulee 29929.
\frac{\mathrm{d}}{\mathrm{d}G_{6674}}(G_{6674}\times \frac{360150000000000000}{29929})
Kerro \frac{1}{100000000000} ja \frac{36015000000000000000000000000}{29929}, niin saadaan \frac{360150000000000000}{29929}.
\frac{360150000000000000}{29929}G_{6674}^{1-1}
ax^{n} derivaatta on nax^{n-1}.
\frac{360150000000000000}{29929}G_{6674}^{0}
Vähennä 1 luvusta 1.
\frac{360150000000000000}{29929}\times 1
Luvulle t, joka ei ole 0, pätee t^{0}=1.
\frac{360150000000000000}{29929}
Mille tahansa termille t pätee t\times 1=t ja 1t=t.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}