Hyppää pääsisältöön
Ratkaise muuttujan x suhteen (complex solution)
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

7x^{2}+4x+1568=0
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-4±\sqrt{4^{2}-4\times 7\times 1568}}{2\times 7}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 7, b luvulla 4 ja c luvulla 1568 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 7\times 1568}}{2\times 7}
Korota 4 neliöön.
x=\frac{-4±\sqrt{16-28\times 1568}}{2\times 7}
Kerro -4 ja 7.
x=\frac{-4±\sqrt{16-43904}}{2\times 7}
Kerro -28 ja 1568.
x=\frac{-4±\sqrt{-43888}}{2\times 7}
Lisää 16 lukuun -43904.
x=\frac{-4±4\sqrt{2743}i}{2\times 7}
Ota luvun -43888 neliöjuuri.
x=\frac{-4±4\sqrt{2743}i}{14}
Kerro 2 ja 7.
x=\frac{-4+4\sqrt{2743}i}{14}
Ratkaise nyt yhtälö x=\frac{-4±4\sqrt{2743}i}{14}, kun ± on plusmerkkinen. Lisää -4 lukuun 4i\sqrt{2743}.
x=\frac{-2+2\sqrt{2743}i}{7}
Jaa -4+4i\sqrt{2743} luvulla 14.
x=\frac{-4\sqrt{2743}i-4}{14}
Ratkaise nyt yhtälö x=\frac{-4±4\sqrt{2743}i}{14}, kun ± on miinusmerkkinen. Vähennä 4i\sqrt{2743} luvusta -4.
x=\frac{-2\sqrt{2743}i-2}{7}
Jaa -4-4i\sqrt{2743} luvulla 14.
x=\frac{-2+2\sqrt{2743}i}{7} x=\frac{-2\sqrt{2743}i-2}{7}
Yhtälö on nyt ratkaistu.
7x^{2}+4x+1568=0
Tällaiset toisen asteen yhtälöt voidaan ratkaista neliöksi täydentämällä. Neliöksi täydentäminen vaatii, että yhtälö on muodossa x^{2}+bx=c.
7x^{2}+4x+1568-1568=-1568
Vähennä 1568 yhtälön molemmilta puolilta.
7x^{2}+4x=-1568
Kun luku 1568 vähennetään itsestään, tulokseksi jää 0.
\frac{7x^{2}+4x}{7}=-\frac{1568}{7}
Jaa molemmat puolet luvulla 7.
x^{2}+\frac{4}{7}x=-\frac{1568}{7}
Jakaminen luvulla 7 kumoaa kertomisen luvulla 7.
x^{2}+\frac{4}{7}x=-224
Jaa -1568 luvulla 7.
x^{2}+\frac{4}{7}x+\left(\frac{2}{7}\right)^{2}=-224+\left(\frac{2}{7}\right)^{2}
Jaa \frac{4}{7} (x-termin kerroin) 2:lla, jolloin saadaan \frac{2}{7}. Lisää sitten \frac{2}{7}:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
x^{2}+\frac{4}{7}x+\frac{4}{49}=-224+\frac{4}{49}
Korota \frac{2}{7} neliöön korottamalla sekä osoittaja että nimittäjä neliöön.
x^{2}+\frac{4}{7}x+\frac{4}{49}=-\frac{10972}{49}
Lisää -224 lukuun \frac{4}{49}.
\left(x+\frac{2}{7}\right)^{2}=-\frac{10972}{49}
Jaa x^{2}+\frac{4}{7}x+\frac{4}{49} tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{7}\right)^{2}}=\sqrt{-\frac{10972}{49}}
Ota neliöjuuri yhtälön molemmilta puolilta.
x+\frac{2}{7}=\frac{2\sqrt{2743}i}{7} x+\frac{2}{7}=-\frac{2\sqrt{2743}i}{7}
Sievennä.
x=\frac{-2+2\sqrt{2743}i}{7} x=\frac{-2\sqrt{2743}i-2}{7}
Vähennä \frac{2}{7} yhtälön molemmilta puolilta.