Hyppää pääsisältöön
Ratkaise muuttujan x suhteen
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

x\left(5x-25\right)=0
Jaa tekijöihin x:n suhteen.
x=0 x=5
Voit etsiä kaava ratkaisuja, ratkaista x=0 ja 5x-25=0.
5x^{2}-25x=0
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}}}{2\times 5}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 5, b luvulla -25 ja c luvulla 0 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-25\right)±25}{2\times 5}
Ota luvun \left(-25\right)^{2} neliöjuuri.
x=\frac{25±25}{2\times 5}
Luvun -25 vastaluku on 25.
x=\frac{25±25}{10}
Kerro 2 ja 5.
x=\frac{50}{10}
Ratkaise nyt yhtälö x=\frac{25±25}{10}, kun ± on plusmerkkinen. Lisää 25 lukuun 25.
x=5
Jaa 50 luvulla 10.
x=\frac{0}{10}
Ratkaise nyt yhtälö x=\frac{25±25}{10}, kun ± on miinusmerkkinen. Vähennä 25 luvusta 25.
x=0
Jaa 0 luvulla 10.
x=5 x=0
Yhtälö on nyt ratkaistu.
5x^{2}-25x=0
Tällaiset toisen asteen yhtälöt voidaan ratkaista neliöksi täydentämällä. Neliöksi täydentäminen vaatii, että yhtälö on muodossa x^{2}+bx=c.
\frac{5x^{2}-25x}{5}=\frac{0}{5}
Jaa molemmat puolet luvulla 5.
x^{2}+\left(-\frac{25}{5}\right)x=\frac{0}{5}
Jakaminen luvulla 5 kumoaa kertomisen luvulla 5.
x^{2}-5x=\frac{0}{5}
Jaa -25 luvulla 5.
x^{2}-5x=0
Jaa 0 luvulla 5.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=\left(-\frac{5}{2}\right)^{2}
Jaa -5 (x-termin kerroin) 2:lla, jolloin saadaan -\frac{5}{2}. Lisää sitten -\frac{5}{2}:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
x^{2}-5x+\frac{25}{4}=\frac{25}{4}
Korota -\frac{5}{2} neliöön korottamalla sekä osoittaja että nimittäjä neliöön.
\left(x-\frac{5}{2}\right)^{2}=\frac{25}{4}
Jaa x^{2}-5x+\frac{25}{4} tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Ota neliöjuuri yhtälön molemmilta puolilta.
x-\frac{5}{2}=\frac{5}{2} x-\frac{5}{2}=-\frac{5}{2}
Sievennä.
x=5 x=0
Lisää \frac{5}{2} yhtälön kummallekin puolelle.