Hyppää pääsisältöön
Jaa tekijöihin
Tick mark Image
Laske
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

5x^{2}-32x+2=0
Toisen asteen polynomi voidaan jakaa tekijöihin käyttämällä muunnosta ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), jossa x_{1} ja x_{2} ovat toisen asteen yhtälön ax^{2}+bx+c=0 ratkaisuja.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 5\times 2}}{2\times 5}
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 5\times 2}}{2\times 5}
Korota -32 neliöön.
x=\frac{-\left(-32\right)±\sqrt{1024-20\times 2}}{2\times 5}
Kerro -4 ja 5.
x=\frac{-\left(-32\right)±\sqrt{1024-40}}{2\times 5}
Kerro -20 ja 2.
x=\frac{-\left(-32\right)±\sqrt{984}}{2\times 5}
Lisää 1024 lukuun -40.
x=\frac{-\left(-32\right)±2\sqrt{246}}{2\times 5}
Ota luvun 984 neliöjuuri.
x=\frac{32±2\sqrt{246}}{2\times 5}
Luvun -32 vastaluku on 32.
x=\frac{32±2\sqrt{246}}{10}
Kerro 2 ja 5.
x=\frac{2\sqrt{246}+32}{10}
Ratkaise nyt yhtälö x=\frac{32±2\sqrt{246}}{10}, kun ± on plusmerkkinen. Lisää 32 lukuun 2\sqrt{246}.
x=\frac{\sqrt{246}+16}{5}
Jaa 32+2\sqrt{246} luvulla 10.
x=\frac{32-2\sqrt{246}}{10}
Ratkaise nyt yhtälö x=\frac{32±2\sqrt{246}}{10}, kun ± on miinusmerkkinen. Vähennä 2\sqrt{246} luvusta 32.
x=\frac{16-\sqrt{246}}{5}
Jaa 32-2\sqrt{246} luvulla 10.
5x^{2}-32x+2=5\left(x-\frac{\sqrt{246}+16}{5}\right)\left(x-\frac{16-\sqrt{246}}{5}\right)
Jaa alkuperäinen lauseke tekijöihin yhtälön ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) avulla. Korvaa \frac{16+\sqrt{246}}{5} kohteella x_{1} ja \frac{16-\sqrt{246}}{5} kohteella x_{2}.