Ratkaise muuttujan x suhteen
x = \frac{\sqrt{201} - 3}{8} \approx 1,39718086
x=\frac{-\sqrt{201}-3}{8}\approx -2,14718086
Kuvaaja
Tietokilpailu
Quadratic Equation
4 x ^ { 2 } = 12 - 3 x
Jakaa
Kopioitu leikepöydälle
4x^{2}-12=-3x
Vähennä 12 molemmilta puolilta.
4x^{2}-12+3x=0
Lisää 3x molemmille puolille.
4x^{2}+3x-12=0
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-3±\sqrt{3^{2}-4\times 4\left(-12\right)}}{2\times 4}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 4, b luvulla 3 ja c luvulla -12 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 4\left(-12\right)}}{2\times 4}
Korota 3 neliöön.
x=\frac{-3±\sqrt{9-16\left(-12\right)}}{2\times 4}
Kerro -4 ja 4.
x=\frac{-3±\sqrt{9+192}}{2\times 4}
Kerro -16 ja -12.
x=\frac{-3±\sqrt{201}}{2\times 4}
Lisää 9 lukuun 192.
x=\frac{-3±\sqrt{201}}{8}
Kerro 2 ja 4.
x=\frac{\sqrt{201}-3}{8}
Ratkaise nyt yhtälö x=\frac{-3±\sqrt{201}}{8}, kun ± on plusmerkkinen. Lisää -3 lukuun \sqrt{201}.
x=\frac{-\sqrt{201}-3}{8}
Ratkaise nyt yhtälö x=\frac{-3±\sqrt{201}}{8}, kun ± on miinusmerkkinen. Vähennä \sqrt{201} luvusta -3.
x=\frac{\sqrt{201}-3}{8} x=\frac{-\sqrt{201}-3}{8}
Yhtälö on nyt ratkaistu.
4x^{2}+3x=12
Lisää 3x molemmille puolille.
\frac{4x^{2}+3x}{4}=\frac{12}{4}
Jaa molemmat puolet luvulla 4.
x^{2}+\frac{3}{4}x=\frac{12}{4}
Jakaminen luvulla 4 kumoaa kertomisen luvulla 4.
x^{2}+\frac{3}{4}x=3
Jaa 12 luvulla 4.
x^{2}+\frac{3}{4}x+\left(\frac{3}{8}\right)^{2}=3+\left(\frac{3}{8}\right)^{2}
Jaa \frac{3}{4} (x-termin kerroin) 2:lla, jolloin saadaan \frac{3}{8}. Lisää sitten \frac{3}{8}:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
x^{2}+\frac{3}{4}x+\frac{9}{64}=3+\frac{9}{64}
Korota \frac{3}{8} neliöön korottamalla sekä osoittaja että nimittäjä neliöön.
x^{2}+\frac{3}{4}x+\frac{9}{64}=\frac{201}{64}
Lisää 3 lukuun \frac{9}{64}.
\left(x+\frac{3}{8}\right)^{2}=\frac{201}{64}
Jaa x^{2}+\frac{3}{4}x+\frac{9}{64} tekijöihin. Yleisesti ottaen, jos x^{2}+bx+c on täydellinen neliö, se voidaan aina jakaa tekijöihin seuraavasti: \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{8}\right)^{2}}=\sqrt{\frac{201}{64}}
Ota neliöjuuri yhtälön molemmilta puolilta.
x+\frac{3}{8}=\frac{\sqrt{201}}{8} x+\frac{3}{8}=-\frac{\sqrt{201}}{8}
Sievennä.
x=\frac{\sqrt{201}-3}{8} x=\frac{-\sqrt{201}-3}{8}
Vähennä \frac{3}{8} yhtälön molemmilta puolilta.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}