Hyppää pääsisältöön
Jaa tekijöihin
Tick mark Image
Laske
Tick mark Image

Samanlaisia ongelmia verkkohausta

Jakaa

p+q=-2 pq=3\left(-5\right)=-15
Jaa lauseke tekijöihin ryhmittelemällä. Lauseke täytyy kirjoittaa ensin uudelleen muodossa 3b^{2}+pb+qb-5. Jos haluat etsiä p ja q, Määritä järjestelmä, jotta voit ratkaista sen.
1,-15 3,-5
Koska pq on negatiivinen, p ja q vastakkaisen merkit. Koska p+q on negatiivinen, negatiivinen luku on suurempi kuin positiivinen arvo. Luettele kaikki tällaisia esimerkiksi tuote -15.
1-15=-14 3-5=-2
Laske kunkin parin summa.
p=-5 q=3
Ratkaisu on pari, joka antaa summa -2.
\left(3b^{2}-5b\right)+\left(3b-5\right)
Kirjoita \left(3b^{2}-5b\right)+\left(3b-5\right) uudelleen muodossa 3b^{2}-2b-5.
b\left(3b-5\right)+3b-5
Ota b tekijäksi lausekkeessa 3b^{2}-5b.
\left(3b-5\right)\left(b+1\right)
Jaa yleinen termi 3b-5 käyttämällä osittelu lain mukaisesti-ominaisuutta.
3b^{2}-2b-5=0
Toisen asteen polynomi voidaan jakaa tekijöihin käyttämällä muunnosta ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), jossa x_{1} ja x_{2} ovat toisen asteen yhtälön ax^{2}+bx+c=0 ratkaisuja.
b=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3\left(-5\right)}}{2\times 3}
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
b=\frac{-\left(-2\right)±\sqrt{4-4\times 3\left(-5\right)}}{2\times 3}
Korota -2 neliöön.
b=\frac{-\left(-2\right)±\sqrt{4-12\left(-5\right)}}{2\times 3}
Kerro -4 ja 3.
b=\frac{-\left(-2\right)±\sqrt{4+60}}{2\times 3}
Kerro -12 ja -5.
b=\frac{-\left(-2\right)±\sqrt{64}}{2\times 3}
Lisää 4 lukuun 60.
b=\frac{-\left(-2\right)±8}{2\times 3}
Ota luvun 64 neliöjuuri.
b=\frac{2±8}{2\times 3}
Luvun -2 vastaluku on 2.
b=\frac{2±8}{6}
Kerro 2 ja 3.
b=\frac{10}{6}
Ratkaise nyt yhtälö b=\frac{2±8}{6}, kun ± on plusmerkkinen. Lisää 2 lukuun 8.
b=\frac{5}{3}
Supista murtoluku \frac{10}{6} luvulla 2.
b=-\frac{6}{6}
Ratkaise nyt yhtälö b=\frac{2±8}{6}, kun ± on miinusmerkkinen. Vähennä 8 luvusta 2.
b=-1
Jaa -6 luvulla 6.
3b^{2}-2b-5=3\left(b-\frac{5}{3}\right)\left(b-\left(-1\right)\right)
Jaa alkuperäinen lauseke tekijöihin yhtälön ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) avulla. Korvaa \frac{5}{3} kohteella x_{1} ja -1 kohteella x_{2}.
3b^{2}-2b-5=3\left(b-\frac{5}{3}\right)\left(b+1\right)
Sievennä kaavan p-\left(-q\right) kaikki lausekkeet muotoon p+q.
3b^{2}-2b-5=3\times \frac{3b-5}{3}\left(b+1\right)
Vähennä \frac{5}{3} luvusta b selvittämällä yhteinen nimittäjä ja vähentämällä osoittajat. Supista sen jälkeen murtoluku pienimpään mahdolliseen nimittäjään.
3b^{2}-2b-5=\left(3b-5\right)\left(b+1\right)
Supista lausekkeiden 3 ja 3 suurin yhteinen tekijä 3.