Ratkaise muuttujan x suhteen
x=6
x=0
Kuvaaja
Jakaa
Kopioitu leikepöydälle
x\left(3x-18\right)=0
Jaa tekijöihin x:n suhteen.
x=0 x=6
Voit etsiä kaava ratkaisuja, ratkaista x=0 ja 3x-18=0.
3x^{2}-18x=0
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}}}{2\times 3}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 3, b luvulla -18 ja c luvulla 0 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±18}{2\times 3}
Ota luvun \left(-18\right)^{2} neliöjuuri.
x=\frac{18±18}{2\times 3}
Luvun -18 vastaluku on 18.
x=\frac{18±18}{6}
Kerro 2 ja 3.
x=\frac{36}{6}
Ratkaise nyt yhtälö x=\frac{18±18}{6}, kun ± on plusmerkkinen. Lisää 18 lukuun 18.
x=6
Jaa 36 luvulla 6.
x=\frac{0}{6}
Ratkaise nyt yhtälö x=\frac{18±18}{6}, kun ± on miinusmerkkinen. Vähennä 18 luvusta 18.
x=0
Jaa 0 luvulla 6.
x=6 x=0
Yhtälö on nyt ratkaistu.
3x^{2}-18x=0
Tällaiset toisen asteen yhtälöt voidaan ratkaista neliöksi täydentämällä. Neliöksi täydentäminen vaatii, että yhtälö on muodossa x^{2}+bx=c.
\frac{3x^{2}-18x}{3}=\frac{0}{3}
Jaa molemmat puolet luvulla 3.
x^{2}+\left(-\frac{18}{3}\right)x=\frac{0}{3}
Jakaminen luvulla 3 kumoaa kertomisen luvulla 3.
x^{2}-6x=\frac{0}{3}
Jaa -18 luvulla 3.
x^{2}-6x=0
Jaa 0 luvulla 3.
x^{2}-6x+\left(-3\right)^{2}=\left(-3\right)^{2}
Jaa -6 (x-termin kerroin) 2:lla, jolloin saadaan -3. Lisää sitten -3:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
x^{2}-6x+9=9
Korota -3 neliöön.
\left(x-3\right)^{2}=9
Jaa x^{2}-6x+9 tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{9}
Ota neliöjuuri yhtälön molemmilta puolilta.
x-3=3 x-3=-3
Sievennä.
x=6 x=0
Lisää 3 yhtälön kummallekin puolelle.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}