Hyppää pääsisältöön
Laske
Tick mark Image
Lavenna
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

\frac{3}{6}\left(\left(3\times 2+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
Kerro 3 ja \frac{1}{6}, niin saadaan \frac{3}{6}.
\frac{1}{2}\left(\left(3\times 2+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
Supista murtoluku \frac{3}{6} luvulla 3.
\frac{1}{2}\left(\left(6+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
Kerro 3 ja 2, niin saadaan 6.
\frac{1}{2}\left(12+2x+\left(2x+3\right)\left(9-x\right)\right)
Laske lukujen 6+x ja 2 tulo käyttämällä osittelulakia.
\frac{1}{2}\left(12+2x+18x-2x^{2}+27-3x\right)
Sovella osittelulakia kertomalla jokainen lausekkeen 2x+3 termi jokaisella lausekkeen 9-x termillä.
\frac{1}{2}\left(12+2x+15x-2x^{2}+27\right)
Selvitä 15x yhdistämällä 18x ja -3x.
\frac{1}{2}\left(12+17x-2x^{2}+27\right)
Selvitä 17x yhdistämällä 2x ja 15x.
\frac{1}{2}\left(39+17x-2x^{2}\right)
Selvitä 39 laskemalla yhteen 12 ja 27.
\frac{1}{2}\times 39+\frac{1}{2}\times 17x+\frac{1}{2}\left(-2\right)x^{2}
Laske lukujen \frac{1}{2} ja 39+17x-2x^{2} tulo käyttämällä osittelulakia.
\frac{39}{2}+\frac{1}{2}\times 17x+\frac{1}{2}\left(-2\right)x^{2}
Kerro \frac{1}{2} ja 39, niin saadaan \frac{39}{2}.
\frac{39}{2}+\frac{17}{2}x+\frac{1}{2}\left(-2\right)x^{2}
Kerro \frac{1}{2} ja 17, niin saadaan \frac{17}{2}.
\frac{39}{2}+\frac{17}{2}x+\frac{-2}{2}x^{2}
Kerro \frac{1}{2} ja -2, niin saadaan \frac{-2}{2}.
\frac{39}{2}+\frac{17}{2}x-x^{2}
Jaa -2 luvulla 2, jolloin ratkaisuksi tulee -1.
\frac{3}{6}\left(\left(3\times 2+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
Kerro 3 ja \frac{1}{6}, niin saadaan \frac{3}{6}.
\frac{1}{2}\left(\left(3\times 2+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
Supista murtoluku \frac{3}{6} luvulla 3.
\frac{1}{2}\left(\left(6+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
Kerro 3 ja 2, niin saadaan 6.
\frac{1}{2}\left(12+2x+\left(2x+3\right)\left(9-x\right)\right)
Laske lukujen 6+x ja 2 tulo käyttämällä osittelulakia.
\frac{1}{2}\left(12+2x+18x-2x^{2}+27-3x\right)
Sovella osittelulakia kertomalla jokainen lausekkeen 2x+3 termi jokaisella lausekkeen 9-x termillä.
\frac{1}{2}\left(12+2x+15x-2x^{2}+27\right)
Selvitä 15x yhdistämällä 18x ja -3x.
\frac{1}{2}\left(12+17x-2x^{2}+27\right)
Selvitä 17x yhdistämällä 2x ja 15x.
\frac{1}{2}\left(39+17x-2x^{2}\right)
Selvitä 39 laskemalla yhteen 12 ja 27.
\frac{1}{2}\times 39+\frac{1}{2}\times 17x+\frac{1}{2}\left(-2\right)x^{2}
Laske lukujen \frac{1}{2} ja 39+17x-2x^{2} tulo käyttämällä osittelulakia.
\frac{39}{2}+\frac{1}{2}\times 17x+\frac{1}{2}\left(-2\right)x^{2}
Kerro \frac{1}{2} ja 39, niin saadaan \frac{39}{2}.
\frac{39}{2}+\frac{17}{2}x+\frac{1}{2}\left(-2\right)x^{2}
Kerro \frac{1}{2} ja 17, niin saadaan \frac{17}{2}.
\frac{39}{2}+\frac{17}{2}x+\frac{-2}{2}x^{2}
Kerro \frac{1}{2} ja -2, niin saadaan \frac{-2}{2}.
\frac{39}{2}+\frac{17}{2}x-x^{2}
Jaa -2 luvulla 2, jolloin ratkaisuksi tulee -1.