Ratkaise muuttujan x suhteen (complex solution)
\left\{\begin{matrix}x\in \mathrm{C}\text{, }&\left(n_{2}=\frac{i\ln(\frac{\sqrt{5}i}{2}+\frac{3}{2}i)}{2\pi }\text{ or }n_{1}=\frac{i\ln(-\frac{\sqrt{5}i}{2}+\frac{3}{2}i)}{2\pi }\right)\text{ and }y_{0}=0\\x=\frac{2\pi n_{3}}{y_{0}}-\frac{i\ln(\frac{\sqrt{5}i}{2}+\frac{3}{2}i)}{y_{0}}\text{, }n_{3}\in \mathrm{Z}\text{; }x=\frac{2\pi n_{4}}{y_{0}}-\frac{i\ln(-\frac{\sqrt{5}i}{2}+\frac{3}{2}i)}{y_{0}}\text{, }n_{4}\in \mathrm{Z}\text{, }&y_{0}\neq 0\end{matrix}\right,
Ratkaise muuttujan y_0 suhteen (complex solution)
\left\{\begin{matrix}y_{0}\in \mathrm{C}\text{, }&\left(n_{2}=\frac{i\ln(\frac{\sqrt{5}i}{2}+\frac{3}{2}i)}{2\pi }\text{ or }n_{1}=\frac{i\ln(-\frac{\sqrt{5}i}{2}+\frac{3}{2}i)}{2\pi }\right)\text{ and }x=0\\y_{0}=\frac{2\pi n_{3}}{x}-\frac{i\ln(\frac{\sqrt{5}i}{2}+\frac{3}{2}i)}{x}\text{, }n_{3}\in \mathrm{Z}\text{; }y_{0}=\frac{2\pi n_{4}}{x}-\frac{i\ln(-\frac{\sqrt{5}i}{2}+\frac{3}{2}i)}{x}\text{, }n_{4}\in \mathrm{Z}\text{, }&x\neq 0\end{matrix}\right,
Kuvaaja
Tietokilpailu
Trigonometry
3 = 2 \sin y _ { 0 } ( x )
Jakaa
Kopioitu leikepöydälle
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}