Hyppää pääsisältöön
Jaa tekijöihin
Tick mark Image
Laske
Tick mark Image

Samanlaisia ongelmia verkkohausta

Jakaa

\left(5a-3\right)\left(-25a^{2}+30a-9\right)
Rationaaliluvulle lause, Kaikki polynomin rationaaliluvulle ovat muodossa \frac{p}{q}, jossa p jakaa vakio termin 27 ja q jakaa alku kertoimen -125. Yksi pääkohde on \frac{3}{5}. Jaa polynomin jakamalla se 5a-3.
p+q=30 pq=-25\left(-9\right)=225
Tarkastele lauseketta -25a^{2}+30a-9. Jaa lauseke tekijöihin ryhmittelemällä. Lauseke täytyy kirjoittaa ensin uudelleen muodossa -25a^{2}+pa+qa-9. Jos haluat etsiä p ja q, Määritä järjestelmä, jotta voit ratkaista sen.
1,225 3,75 5,45 9,25 15,15
Koska pq on positiivinen, p ja q on sama merkki. Koska p+q on positiivinen, p ja q ovat molemmat positiivisia. Luettele kaikki tällaisia esimerkiksi tuote 225.
1+225=226 3+75=78 5+45=50 9+25=34 15+15=30
Laske kunkin parin summa.
p=15 q=15
Ratkaisu on pari, joka antaa summa 30.
\left(-25a^{2}+15a\right)+\left(15a-9\right)
Kirjoita \left(-25a^{2}+15a\right)+\left(15a-9\right) uudelleen muodossa -25a^{2}+30a-9.
-5a\left(5a-3\right)+3\left(5a-3\right)
Jaa -5a toisessa ryhmässä ensimmäisessä ja 3.
\left(5a-3\right)\left(-5a+3\right)
Jaa yleinen termi 5a-3 käyttämällä osittelu lain mukaisesti-ominaisuutta.
\left(-5a+3\right)\left(5a-3\right)^{2}
Kirjoita koko tekijöihin jaettu lauseke uudelleen.