Hyppää pääsisältöön
Ratkaise muuttujan x suhteen
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

2xx+x\left(-1\right)=1
Muuttuja x ei voi olla yhtä suuri kuin 0, sillä nollalla jakamista ei ole määritetty. Kerro yhtälön molemmat puolet luvulla x.
2x^{2}+x\left(-1\right)=1
Kerro x ja x, niin saadaan x^{2}.
2x^{2}+x\left(-1\right)-1=0
Vähennä 1 molemmilta puolilta.
2x^{2}-x-1=0
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-1\right)}}{2\times 2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 2, b luvulla -1 ja c luvulla -1 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-1\right)}}{2\times 2}
Kerro -4 ja 2.
x=\frac{-\left(-1\right)±\sqrt{1+8}}{2\times 2}
Kerro -8 ja -1.
x=\frac{-\left(-1\right)±\sqrt{9}}{2\times 2}
Lisää 1 lukuun 8.
x=\frac{-\left(-1\right)±3}{2\times 2}
Ota luvun 9 neliöjuuri.
x=\frac{1±3}{2\times 2}
Luvun -1 vastaluku on 1.
x=\frac{1±3}{4}
Kerro 2 ja 2.
x=\frac{4}{4}
Ratkaise nyt yhtälö x=\frac{1±3}{4}, kun ± on plusmerkkinen. Lisää 1 lukuun 3.
x=1
Jaa 4 luvulla 4.
x=-\frac{2}{4}
Ratkaise nyt yhtälö x=\frac{1±3}{4}, kun ± on miinusmerkkinen. Vähennä 3 luvusta 1.
x=-\frac{1}{2}
Supista murtoluku \frac{-2}{4} luvulla 2.
x=1 x=-\frac{1}{2}
Yhtälö on nyt ratkaistu.
2xx+x\left(-1\right)=1
Muuttuja x ei voi olla yhtä suuri kuin 0, sillä nollalla jakamista ei ole määritetty. Kerro yhtälön molemmat puolet luvulla x.
2x^{2}+x\left(-1\right)=1
Kerro x ja x, niin saadaan x^{2}.
2x^{2}-x=1
Tällaiset toisen asteen yhtälöt voidaan ratkaista neliöksi täydentämällä. Neliöksi täydentäminen vaatii, että yhtälö on muodossa x^{2}+bx=c.
\frac{2x^{2}-x}{2}=\frac{1}{2}
Jaa molemmat puolet luvulla 2.
x^{2}-\frac{1}{2}x=\frac{1}{2}
Jakaminen luvulla 2 kumoaa kertomisen luvulla 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(-\frac{1}{4}\right)^{2}
Jaa -\frac{1}{2} (x-termin kerroin) 2:lla, jolloin saadaan -\frac{1}{4}. Lisää sitten -\frac{1}{4}:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
Korota -\frac{1}{4} neliöön korottamalla sekä osoittaja että nimittäjä neliöön.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{9}{16}
Lisää \frac{1}{2} lukuun \frac{1}{16} selvittämällä yhteinen nimittäjä ja laskemalla osoittajat yhteen. Supista sen jälkeen murtoluku pienimpään mahdolliseen nimittäjään.
\left(x-\frac{1}{4}\right)^{2}=\frac{9}{16}
Jaa x^{2}-\frac{1}{2}x+\frac{1}{16} tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Ota neliöjuuri yhtälön molemmilta puolilta.
x-\frac{1}{4}=\frac{3}{4} x-\frac{1}{4}=-\frac{3}{4}
Sievennä.
x=1 x=-\frac{1}{2}
Lisää \frac{1}{4} yhtälön kummallekin puolelle.