Ratkaise muuttujan x suhteen
x=2\sqrt{5}\approx 4,472135955
x=-2\sqrt{5}\approx -4,472135955
Kuvaaja
Jakaa
Kopioitu leikepöydälle
2x^{2}=30+10
Lisää 10 molemmille puolille.
2x^{2}=40
Selvitä 40 laskemalla yhteen 30 ja 10.
x^{2}=\frac{40}{2}
Jaa molemmat puolet luvulla 2.
x^{2}=20
Jaa 40 luvulla 2, jolloin ratkaisuksi tulee 20.
x=2\sqrt{5} x=-2\sqrt{5}
Ota neliöjuuri yhtälön molemmilta puolilta.
2x^{2}-10-30=0
Vähennä 30 molemmilta puolilta.
2x^{2}-40=0
Vähennä 30 luvusta -10 saadaksesi tuloksen -40.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-40\right)}}{2\times 2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 2, b luvulla 0 ja c luvulla -40 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-40\right)}}{2\times 2}
Korota 0 neliöön.
x=\frac{0±\sqrt{-8\left(-40\right)}}{2\times 2}
Kerro -4 ja 2.
x=\frac{0±\sqrt{320}}{2\times 2}
Kerro -8 ja -40.
x=\frac{0±8\sqrt{5}}{2\times 2}
Ota luvun 320 neliöjuuri.
x=\frac{0±8\sqrt{5}}{4}
Kerro 2 ja 2.
x=2\sqrt{5}
Ratkaise nyt yhtälö x=\frac{0±8\sqrt{5}}{4}, kun ± on plusmerkkinen.
x=-2\sqrt{5}
Ratkaise nyt yhtälö x=\frac{0±8\sqrt{5}}{4}, kun ± on miinusmerkkinen.
x=2\sqrt{5} x=-2\sqrt{5}
Yhtälö on nyt ratkaistu.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}