Hyppää pääsisältöön
Ratkaise muuttujan a suhteen
Tick mark Image

Samanlaisia ongelmia verkkohausta

Jakaa

a\left(2a+1\right)=0
Jaa tekijöihin a:n suhteen.
a=0 a=-\frac{1}{2}
Voit etsiä kaava ratkaisuja, ratkaista a=0 ja 2a+1=0.
2a^{2}+a=0
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
a=\frac{-1±\sqrt{1^{2}}}{2\times 2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 2, b luvulla 1 ja c luvulla 0 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-1±1}{2\times 2}
Ota luvun 1^{2} neliöjuuri.
a=\frac{-1±1}{4}
Kerro 2 ja 2.
a=\frac{0}{4}
Ratkaise nyt yhtälö a=\frac{-1±1}{4}, kun ± on plusmerkkinen. Lisää -1 lukuun 1.
a=0
Jaa 0 luvulla 4.
a=-\frac{2}{4}
Ratkaise nyt yhtälö a=\frac{-1±1}{4}, kun ± on miinusmerkkinen. Vähennä 1 luvusta -1.
a=-\frac{1}{2}
Supista murtoluku \frac{-2}{4} luvulla 2.
a=0 a=-\frac{1}{2}
Yhtälö on nyt ratkaistu.
2a^{2}+a=0
Tällaiset toisen asteen yhtälöt voidaan ratkaista neliöksi täydentämällä. Neliöksi täydentäminen vaatii, että yhtälö on muodossa x^{2}+bx=c.
\frac{2a^{2}+a}{2}=\frac{0}{2}
Jaa molemmat puolet luvulla 2.
a^{2}+\frac{1}{2}a=\frac{0}{2}
Jakaminen luvulla 2 kumoaa kertomisen luvulla 2.
a^{2}+\frac{1}{2}a=0
Jaa 0 luvulla 2.
a^{2}+\frac{1}{2}a+\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{4}\right)^{2}
Jaa \frac{1}{2} (x-termin kerroin) 2:lla, jolloin saadaan \frac{1}{4}. Lisää sitten \frac{1}{4}:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
a^{2}+\frac{1}{2}a+\frac{1}{16}=\frac{1}{16}
Korota \frac{1}{4} neliöön korottamalla sekä osoittaja että nimittäjä neliöön.
\left(a+\frac{1}{4}\right)^{2}=\frac{1}{16}
Jaa a^{2}+\frac{1}{2}a+\frac{1}{16} tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Ota neliöjuuri yhtälön molemmilta puolilta.
a+\frac{1}{4}=\frac{1}{4} a+\frac{1}{4}=-\frac{1}{4}
Sievennä.
a=0 a=-\frac{1}{2}
Vähennä \frac{1}{4} yhtälön molemmilta puolilta.