2 ( y + x ) d x = x y + y
Ratkaise muuttujan d suhteen (complex solution)
\left\{\begin{matrix}d=\frac{y\left(x+1\right)}{2x\left(x+y\right)}\text{, }&x\neq 0\text{ and }y\neq -x\\d\in \mathrm{C}\text{, }&\left(y=0\text{ and }x=0\right)\text{ or }\left(x=-1\text{ and }y=1\right)\end{matrix}\right,
Ratkaise muuttujan d suhteen
\left\{\begin{matrix}d=\frac{y\left(x+1\right)}{2x\left(x+y\right)}\text{, }&x\neq 0\text{ and }y\neq -x\\d\in \mathrm{R}\text{, }&\left(y=0\text{ and }x=0\right)\text{ or }\left(x=-1\text{ and }y=1\right)\end{matrix}\right,
Ratkaise muuttujan x suhteen (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{y\left(y\left(2d-1\right)^{2}+8d\right)}-2dy+y}{4d}\text{; }x=\frac{-\sqrt{y\left(y\left(2d-1\right)^{2}+8d\right)}-2dy+y}{4d}\text{, }&d\neq 0\\x=-1\text{, }&y\neq 0\text{ and }d=0\\x\in \mathrm{C}\text{, }&d=0\text{ and }y=0\end{matrix}\right,
Ratkaise muuttujan x suhteen
\left\{\begin{matrix}x=\frac{\sqrt{y\left(4yd^{2}-4dy+y+8d\right)}-2dy+y}{4d}\text{; }x=\frac{-\sqrt{y\left(4yd^{2}-4dy+y+8d\right)}-2dy+y}{4d}\text{, }&\left(d\neq 0\text{ and }d\neq \frac{1}{2}\text{ and }y=-\frac{8d}{4d^{2}-4d+1}\right)\text{ or }\left(d\neq 0\text{ and }d\neq \frac{1}{2}\text{ and }y\leq -\frac{8d}{4d^{2}-4d+1}\text{ and }y\leq 0\right)\text{ or }\left(d\neq 0\text{ and }y\geq 0\text{ and }y\geq -\frac{8d}{4d^{2}-4d+1}\right)\text{ or }\left(d=\frac{1}{2}\text{ and }y\geq 0\right)\text{ or }\left(d\neq 0\text{ and }y=0\right)\\x=-1\text{, }&y\neq 0\text{ and }d=0\\x\in \mathrm{R}\text{, }&d=0\text{ and }y=0\end{matrix}\right,
Kuvaaja
Jakaa
Kopioitu leikepöydälle
\left(2y+2x\right)dx=xy+y
Laske lukujen 2 ja y+x tulo käyttämällä osittelulakia.
\left(2yd+2xd\right)x=xy+y
Laske lukujen 2y+2x ja d tulo käyttämällä osittelulakia.
2ydx+2dx^{2}=xy+y
Laske lukujen 2yd+2xd ja x tulo käyttämällä osittelulakia.
\left(2yx+2x^{2}\right)d=xy+y
Yhdistä kaikki termit, jotka sisältävät d:n.
\left(2x^{2}+2xy\right)d=xy+y
Yhtälö on perusmuodossa.
\frac{\left(2x^{2}+2xy\right)d}{2x^{2}+2xy}=\frac{xy+y}{2x^{2}+2xy}
Jaa molemmat puolet luvulla 2x^{2}+2xy.
d=\frac{xy+y}{2x^{2}+2xy}
Jakaminen luvulla 2x^{2}+2xy kumoaa kertomisen luvulla 2x^{2}+2xy.
d=\frac{y\left(x+1\right)}{2x\left(x+y\right)}
Jaa yx+y luvulla 2x^{2}+2xy.
\left(2y+2x\right)dx=xy+y
Laske lukujen 2 ja y+x tulo käyttämällä osittelulakia.
\left(2yd+2xd\right)x=xy+y
Laske lukujen 2y+2x ja d tulo käyttämällä osittelulakia.
2ydx+2dx^{2}=xy+y
Laske lukujen 2yd+2xd ja x tulo käyttämällä osittelulakia.
\left(2yx+2x^{2}\right)d=xy+y
Yhdistä kaikki termit, jotka sisältävät d:n.
\left(2x^{2}+2xy\right)d=xy+y
Yhtälö on perusmuodossa.
\frac{\left(2x^{2}+2xy\right)d}{2x^{2}+2xy}=\frac{xy+y}{2x^{2}+2xy}
Jaa molemmat puolet luvulla 2x^{2}+2xy.
d=\frac{xy+y}{2x^{2}+2xy}
Jakaminen luvulla 2x^{2}+2xy kumoaa kertomisen luvulla 2x^{2}+2xy.
d=\frac{y\left(x+1\right)}{2x\left(x+y\right)}
Jaa yx+y luvulla 2x^{2}+2xy.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}