Hyppää pääsisältöön
Ratkaise muuttujan x suhteen
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

2x^{2}+x^{2}=180
Laske -x potenssiin 2, jolloin ratkaisuksi tulee x^{2}.
3x^{2}=180
Selvitä 3x^{2} yhdistämällä 2x^{2} ja x^{2}.
x^{2}=\frac{180}{3}
Jaa molemmat puolet luvulla 3.
x^{2}=60
Jaa 180 luvulla 3, jolloin ratkaisuksi tulee 60.
x=2\sqrt{15} x=-2\sqrt{15}
Ota neliöjuuri yhtälön molemmilta puolilta.
2x^{2}+x^{2}=180
Laske -x potenssiin 2, jolloin ratkaisuksi tulee x^{2}.
3x^{2}=180
Selvitä 3x^{2} yhdistämällä 2x^{2} ja x^{2}.
3x^{2}-180=0
Vähennä 180 molemmilta puolilta.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-180\right)}}{2\times 3}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 3, b luvulla 0 ja c luvulla -180 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-180\right)}}{2\times 3}
Korota 0 neliöön.
x=\frac{0±\sqrt{-12\left(-180\right)}}{2\times 3}
Kerro -4 ja 3.
x=\frac{0±\sqrt{2160}}{2\times 3}
Kerro -12 ja -180.
x=\frac{0±12\sqrt{15}}{2\times 3}
Ota luvun 2160 neliöjuuri.
x=\frac{0±12\sqrt{15}}{6}
Kerro 2 ja 3.
x=2\sqrt{15}
Ratkaise nyt yhtälö x=\frac{0±12\sqrt{15}}{6}, kun ± on plusmerkkinen.
x=-2\sqrt{15}
Ratkaise nyt yhtälö x=\frac{0±12\sqrt{15}}{6}, kun ± on miinusmerkkinen.
x=2\sqrt{15} x=-2\sqrt{15}
Yhtälö on nyt ratkaistu.