Hyppää pääsisältöön
Ratkaise muuttujan x suhteen
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

16-8x+x^{2}=0
Lisää x^{2} molemmille puolille.
x^{2}-8x+16=0
Järjestä polynomi perusmuotoon. Aseta termit suurimmasta potenssista pienimpään.
a+b=-8 ab=16
Jos haluat ratkaista kaavan, kerroin x^{2}-8x+16 käyttämällä kaavaa x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
-1,-16 -2,-8 -4,-4
Koska ab on positiivinen, a ja b on sama merkki. Koska a+b on negatiivinen, a ja b ovat molemmat negatiivisia. Luettele kaikki tällaisia esimerkiksi tuote 16.
-1-16=-17 -2-8=-10 -4-4=-8
Laske kunkin parin summa.
a=-4 b=-4
Ratkaisu on pari, joka antaa summa -8.
\left(x-4\right)\left(x-4\right)
Kirjoita tekijöihin jaettu lauseke \left(x+a\right)\left(x+b\right) uudelleen käyttämällä saatuja arvoja.
\left(x-4\right)^{2}
Kirjoita uudelleen binomin neliönä.
x=4
Löydät yhtälön ratkaisun ratkaisemalla yhtälön x-4=0.
16-8x+x^{2}=0
Lisää x^{2} molemmille puolille.
x^{2}-8x+16=0
Järjestä polynomi perusmuotoon. Aseta termit suurimmasta potenssista pienimpään.
a+b=-8 ab=1\times 16=16
Ratkaise yhtälö jakamalla vasen puoli tekijöihin ryhmittelyn avulla. Vasen puoli on ensin kirjoitettava uudelleen muotoon x^{2}+ax+bx+16. Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
-1,-16 -2,-8 -4,-4
Koska ab on positiivinen, a ja b on sama merkki. Koska a+b on negatiivinen, a ja b ovat molemmat negatiivisia. Luettele kaikki tällaisia esimerkiksi tuote 16.
-1-16=-17 -2-8=-10 -4-4=-8
Laske kunkin parin summa.
a=-4 b=-4
Ratkaisu on pari, joka antaa summa -8.
\left(x^{2}-4x\right)+\left(-4x+16\right)
Kirjoita \left(x^{2}-4x\right)+\left(-4x+16\right) uudelleen muodossa x^{2}-8x+16.
x\left(x-4\right)-4\left(x-4\right)
Jaa x toisessa ryhmässä ensimmäisessä ja -4.
\left(x-4\right)\left(x-4\right)
Jaa yleinen termi x-4 käyttämällä osittelu lain mukaisesti-ominaisuutta.
\left(x-4\right)^{2}
Kirjoita uudelleen binomin neliönä.
x=4
Löydät yhtälön ratkaisun ratkaisemalla yhtälön x-4=0.
16-8x+x^{2}=0
Lisää x^{2} molemmille puolille.
x^{2}-8x+16=0
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 16}}{2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 1, b luvulla -8 ja c luvulla 16 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 16}}{2}
Korota -8 neliöön.
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2}
Kerro -4 ja 16.
x=\frac{-\left(-8\right)±\sqrt{0}}{2}
Lisää 64 lukuun -64.
x=-\frac{-8}{2}
Ota luvun 0 neliöjuuri.
x=\frac{8}{2}
Luvun -8 vastaluku on 8.
x=4
Jaa 8 luvulla 2.
16-8x+x^{2}=0
Lisää x^{2} molemmille puolille.
-8x+x^{2}=-16
Vähennä 16 molemmilta puolilta. Nolla miinus mikä tahansa luku on luvun vastaluku.
x^{2}-8x=-16
Tällaiset toisen asteen yhtälöt voidaan ratkaista neliöksi täydentämällä. Neliöksi täydentäminen vaatii, että yhtälö on muodossa x^{2}+bx=c.
x^{2}-8x+\left(-4\right)^{2}=-16+\left(-4\right)^{2}
Jaa -8 (x-termin kerroin) 2:lla, jolloin saadaan -4. Lisää sitten -4:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
x^{2}-8x+16=-16+16
Korota -4 neliöön.
x^{2}-8x+16=0
Lisää -16 lukuun 16.
\left(x-4\right)^{2}=0
Jaa x^{2}-8x+16 tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{0}
Ota neliöjuuri yhtälön molemmilta puolilta.
x-4=0 x-4=0
Sievennä.
x=4 x=4
Lisää 4 yhtälön kummallekin puolelle.
x=4
Yhtälö on nyt ratkaistu. Ratkaisut ovat samat.