Hyppää pääsisältöön
Ratkaise muuttujan x suhteen (complex solution)
Tick mark Image
Ratkaise muuttujan x suhteen
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

125\left(8x^{3}-12x^{2}+6x-1\right)+2=66
Käytä binomilausetta \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} yhtälön \left(2x-1\right)^{3} laajentamiseen.
1000x^{3}-1500x^{2}+750x-125+2=66
Laske lukujen 125 ja 8x^{3}-12x^{2}+6x-1 tulo käyttämällä osittelulakia.
1000x^{3}-1500x^{2}+750x-123=66
Selvitä -123 laskemalla yhteen -125 ja 2.
1000x^{3}-1500x^{2}+750x-123-66=0
Vähennä 66 molemmilta puolilta.
1000x^{3}-1500x^{2}+750x-189=0
Vähennä 66 luvusta -123 saadaksesi tuloksen -189.
±\frac{189}{1000},±\frac{189}{500},±\frac{189}{250},±\frac{189}{200},±\frac{189}{125},±\frac{189}{100},±\frac{189}{50},±\frac{189}{40},±\frac{189}{25},±\frac{189}{20},±\frac{189}{10},±\frac{189}{8},±\frac{189}{5},±\frac{189}{4},±\frac{189}{2},±189,±\frac{63}{1000},±\frac{63}{500},±\frac{63}{250},±\frac{63}{200},±\frac{63}{125},±\frac{63}{100},±\frac{63}{50},±\frac{63}{40},±\frac{63}{25},±\frac{63}{20},±\frac{63}{10},±\frac{63}{8},±\frac{63}{5},±\frac{63}{4},±\frac{63}{2},±63,±\frac{27}{1000},±\frac{27}{500},±\frac{27}{250},±\frac{27}{200},±\frac{27}{125},±\frac{27}{100},±\frac{27}{50},±\frac{27}{40},±\frac{27}{25},±\frac{27}{20},±\frac{27}{10},±\frac{27}{8},±\frac{27}{5},±\frac{27}{4},±\frac{27}{2},±27,±\frac{21}{1000},±\frac{21}{500},±\frac{21}{250},±\frac{21}{200},±\frac{21}{125},±\frac{21}{100},±\frac{21}{50},±\frac{21}{40},±\frac{21}{25},±\frac{21}{20},±\frac{21}{10},±\frac{21}{8},±\frac{21}{5},±\frac{21}{4},±\frac{21}{2},±21,±\frac{9}{1000},±\frac{9}{500},±\frac{9}{250},±\frac{9}{200},±\frac{9}{125},±\frac{9}{100},±\frac{9}{50},±\frac{9}{40},±\frac{9}{25},±\frac{9}{20},±\frac{9}{10},±\frac{9}{8},±\frac{9}{5},±\frac{9}{4},±\frac{9}{2},±9,±\frac{7}{1000},±\frac{7}{500},±\frac{7}{250},±\frac{7}{200},±\frac{7}{125},±\frac{7}{100},±\frac{7}{50},±\frac{7}{40},±\frac{7}{25},±\frac{7}{20},±\frac{7}{10},±\frac{7}{8},±\frac{7}{5},±\frac{7}{4},±\frac{7}{2},±7,±\frac{3}{1000},±\frac{3}{500},±\frac{3}{250},±\frac{3}{200},±\frac{3}{125},±\frac{3}{100},±\frac{3}{50},±\frac{3}{40},±\frac{3}{25},±\frac{3}{20},±\frac{3}{10},±\frac{3}{8},±\frac{3}{5},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{1000},±\frac{1}{500},±\frac{1}{250},±\frac{1}{200},±\frac{1}{125},±\frac{1}{100},±\frac{1}{50},±\frac{1}{40},±\frac{1}{25},±\frac{1}{20},±\frac{1}{10},±\frac{1}{8},±\frac{1}{5},±\frac{1}{4},±\frac{1}{2},±1
Rationaaliluvulle lause, Kaikki polynomin rationaaliluvulle ovat muodossa \frac{p}{q}, jossa p jakaa vakio termin -189 ja q jakaa alku kertoimen 1000. Luettele kaikki ehdokkaat \frac{p}{q}.
x=\frac{9}{10}
Etsi yksi tällainen juuri kokeilemalla kaikkia kokonaislukuarvoja pienimmästä alkaen absoluuttisen arvon mukaan. Jos kokonaislukujuuria ei löydy, kokeile murtolukuja.
100x^{2}-60x+21=0
Tekijä lause x-k on kunkin k pääsivuston polynomin kerroin. Jaa 1000x^{3}-1500x^{2}+750x-189 luvulla 10\left(x-\frac{9}{10}\right)=10x-9, jolloin ratkaisuksi tulee 100x^{2}-60x+21. Ratkaise yhtälö, kun sen tulos on yhtä suuri kuin 0.
x=\frac{-\left(-60\right)±\sqrt{\left(-60\right)^{2}-4\times 100\times 21}}{2\times 100}
Kaikki kaavan ax^{2}+bx+c=0 yhtälöt voidaan ratkaista käyttämällä toisen asteen yhtälön kaavaa: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Sijoita kaavassa muuttujan 100 tilalle a, muuttujan -60 tilalle b ja muuttujan 21 tilalle c.
x=\frac{60±\sqrt{-4800}}{200}
Suorita laskutoimitukset.
x=-\frac{\sqrt{3}i}{5}+\frac{3}{10} x=\frac{\sqrt{3}i}{5}+\frac{3}{10}
Ratkaise yhtälö 100x^{2}-60x+21=0 kun ± on plus ja ± on miinus.
x=\frac{9}{10} x=-\frac{\sqrt{3}i}{5}+\frac{3}{10} x=\frac{\sqrt{3}i}{5}+\frac{3}{10}
Luetteloi kaikki löydetyt ratkaisut.
125\left(8x^{3}-12x^{2}+6x-1\right)+2=66
Käytä binomilausetta \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} yhtälön \left(2x-1\right)^{3} laajentamiseen.
1000x^{3}-1500x^{2}+750x-125+2=66
Laske lukujen 125 ja 8x^{3}-12x^{2}+6x-1 tulo käyttämällä osittelulakia.
1000x^{3}-1500x^{2}+750x-123=66
Selvitä -123 laskemalla yhteen -125 ja 2.
1000x^{3}-1500x^{2}+750x-123-66=0
Vähennä 66 molemmilta puolilta.
1000x^{3}-1500x^{2}+750x-189=0
Vähennä 66 luvusta -123 saadaksesi tuloksen -189.
±\frac{189}{1000},±\frac{189}{500},±\frac{189}{250},±\frac{189}{200},±\frac{189}{125},±\frac{189}{100},±\frac{189}{50},±\frac{189}{40},±\frac{189}{25},±\frac{189}{20},±\frac{189}{10},±\frac{189}{8},±\frac{189}{5},±\frac{189}{4},±\frac{189}{2},±189,±\frac{63}{1000},±\frac{63}{500},±\frac{63}{250},±\frac{63}{200},±\frac{63}{125},±\frac{63}{100},±\frac{63}{50},±\frac{63}{40},±\frac{63}{25},±\frac{63}{20},±\frac{63}{10},±\frac{63}{8},±\frac{63}{5},±\frac{63}{4},±\frac{63}{2},±63,±\frac{27}{1000},±\frac{27}{500},±\frac{27}{250},±\frac{27}{200},±\frac{27}{125},±\frac{27}{100},±\frac{27}{50},±\frac{27}{40},±\frac{27}{25},±\frac{27}{20},±\frac{27}{10},±\frac{27}{8},±\frac{27}{5},±\frac{27}{4},±\frac{27}{2},±27,±\frac{21}{1000},±\frac{21}{500},±\frac{21}{250},±\frac{21}{200},±\frac{21}{125},±\frac{21}{100},±\frac{21}{50},±\frac{21}{40},±\frac{21}{25},±\frac{21}{20},±\frac{21}{10},±\frac{21}{8},±\frac{21}{5},±\frac{21}{4},±\frac{21}{2},±21,±\frac{9}{1000},±\frac{9}{500},±\frac{9}{250},±\frac{9}{200},±\frac{9}{125},±\frac{9}{100},±\frac{9}{50},±\frac{9}{40},±\frac{9}{25},±\frac{9}{20},±\frac{9}{10},±\frac{9}{8},±\frac{9}{5},±\frac{9}{4},±\frac{9}{2},±9,±\frac{7}{1000},±\frac{7}{500},±\frac{7}{250},±\frac{7}{200},±\frac{7}{125},±\frac{7}{100},±\frac{7}{50},±\frac{7}{40},±\frac{7}{25},±\frac{7}{20},±\frac{7}{10},±\frac{7}{8},±\frac{7}{5},±\frac{7}{4},±\frac{7}{2},±7,±\frac{3}{1000},±\frac{3}{500},±\frac{3}{250},±\frac{3}{200},±\frac{3}{125},±\frac{3}{100},±\frac{3}{50},±\frac{3}{40},±\frac{3}{25},±\frac{3}{20},±\frac{3}{10},±\frac{3}{8},±\frac{3}{5},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{1000},±\frac{1}{500},±\frac{1}{250},±\frac{1}{200},±\frac{1}{125},±\frac{1}{100},±\frac{1}{50},±\frac{1}{40},±\frac{1}{25},±\frac{1}{20},±\frac{1}{10},±\frac{1}{8},±\frac{1}{5},±\frac{1}{4},±\frac{1}{2},±1
Rationaaliluvulle lause, Kaikki polynomin rationaaliluvulle ovat muodossa \frac{p}{q}, jossa p jakaa vakio termin -189 ja q jakaa alku kertoimen 1000. Luettele kaikki ehdokkaat \frac{p}{q}.
x=\frac{9}{10}
Etsi yksi tällainen juuri kokeilemalla kaikkia kokonaislukuarvoja pienimmästä alkaen absoluuttisen arvon mukaan. Jos kokonaislukujuuria ei löydy, kokeile murtolukuja.
100x^{2}-60x+21=0
Tekijä lause x-k on kunkin k pääsivuston polynomin kerroin. Jaa 1000x^{3}-1500x^{2}+750x-189 luvulla 10\left(x-\frac{9}{10}\right)=10x-9, jolloin ratkaisuksi tulee 100x^{2}-60x+21. Ratkaise yhtälö, kun sen tulos on yhtä suuri kuin 0.
x=\frac{-\left(-60\right)±\sqrt{\left(-60\right)^{2}-4\times 100\times 21}}{2\times 100}
Kaikki kaavan ax^{2}+bx+c=0 yhtälöt voidaan ratkaista käyttämällä toisen asteen yhtälön kaavaa: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Sijoita kaavassa muuttujan 100 tilalle a, muuttujan -60 tilalle b ja muuttujan 21 tilalle c.
x=\frac{60±\sqrt{-4800}}{200}
Suorita laskutoimitukset.
x\in \emptyset
Negatiivisen luvun neliöjuurta ei ole määritelty reaalilukujen joukossa, joten ratkaisuja ei ole.
x=\frac{9}{10}
Luetteloi kaikki löydetyt ratkaisut.