Hyppää pääsisältöön
Ratkaise muuttujan x suhteen
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

a+b=-590 ab=1000\left(-561\right)=-561000
Ratkaise yhtälö jakamalla vasen puoli tekijöihin ryhmittelyn avulla. Vasen puoli on ensin kirjoitettava uudelleen muotoon 1000x^{2}+ax+bx-561. Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
1,-561000 2,-280500 3,-187000 4,-140250 5,-112200 6,-93500 8,-70125 10,-56100 11,-51000 12,-46750 15,-37400 17,-33000 20,-28050 22,-25500 24,-23375 25,-22440 30,-18700 33,-17000 34,-16500 40,-14025 44,-12750 50,-11220 51,-11000 55,-10200 60,-9350 66,-8500 68,-8250 75,-7480 85,-6600 88,-6375 100,-5610 102,-5500 110,-5100 120,-4675 125,-4488 132,-4250 136,-4125 150,-3740 165,-3400 170,-3300 187,-3000 200,-2805 204,-2750 220,-2550 250,-2244 255,-2200 264,-2125 275,-2040 300,-1870 330,-1700 340,-1650 374,-1500 375,-1496 408,-1375 425,-1320 440,-1275 500,-1122 510,-1100 550,-1020 561,-1000 600,-935 660,-850 680,-825 748,-750
Koska ab on negatiivinen, a ja b vastakkaisen merkit. Koska a+b on negatiivinen, negatiivinen luku on suurempi kuin positiivinen arvo. Luettele kaikki tällaisia esimerkiksi tuote -561000.
1-561000=-560999 2-280500=-280498 3-187000=-186997 4-140250=-140246 5-112200=-112195 6-93500=-93494 8-70125=-70117 10-56100=-56090 11-51000=-50989 12-46750=-46738 15-37400=-37385 17-33000=-32983 20-28050=-28030 22-25500=-25478 24-23375=-23351 25-22440=-22415 30-18700=-18670 33-17000=-16967 34-16500=-16466 40-14025=-13985 44-12750=-12706 50-11220=-11170 51-11000=-10949 55-10200=-10145 60-9350=-9290 66-8500=-8434 68-8250=-8182 75-7480=-7405 85-6600=-6515 88-6375=-6287 100-5610=-5510 102-5500=-5398 110-5100=-4990 120-4675=-4555 125-4488=-4363 132-4250=-4118 136-4125=-3989 150-3740=-3590 165-3400=-3235 170-3300=-3130 187-3000=-2813 200-2805=-2605 204-2750=-2546 220-2550=-2330 250-2244=-1994 255-2200=-1945 264-2125=-1861 275-2040=-1765 300-1870=-1570 330-1700=-1370 340-1650=-1310 374-1500=-1126 375-1496=-1121 408-1375=-967 425-1320=-895 440-1275=-835 500-1122=-622 510-1100=-590 550-1020=-470 561-1000=-439 600-935=-335 660-850=-190 680-825=-145 748-750=-2
Laske kunkin parin summa.
a=-1100 b=510
Ratkaisu on pari, joka antaa summa -590.
\left(1000x^{2}-1100x\right)+\left(510x-561\right)
Kirjoita \left(1000x^{2}-1100x\right)+\left(510x-561\right) uudelleen muodossa 1000x^{2}-590x-561.
100x\left(10x-11\right)+51\left(10x-11\right)
Jaa 100x toisessa ryhmässä ensimmäisessä ja 51.
\left(10x-11\right)\left(100x+51\right)
Jaa yleinen termi 10x-11 käyttämällä osittelu lain mukaisesti-ominaisuutta.
x=\frac{11}{10} x=-\frac{51}{100}
Voit etsiä kaava ratkaisuja, ratkaista 10x-11=0 ja 100x+51=0.
1000x^{2}-590x-561=0
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-\left(-590\right)±\sqrt{\left(-590\right)^{2}-4\times 1000\left(-561\right)}}{2\times 1000}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 1000, b luvulla -590 ja c luvulla -561 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-590\right)±\sqrt{348100-4\times 1000\left(-561\right)}}{2\times 1000}
Korota -590 neliöön.
x=\frac{-\left(-590\right)±\sqrt{348100-4000\left(-561\right)}}{2\times 1000}
Kerro -4 ja 1000.
x=\frac{-\left(-590\right)±\sqrt{348100+2244000}}{2\times 1000}
Kerro -4000 ja -561.
x=\frac{-\left(-590\right)±\sqrt{2592100}}{2\times 1000}
Lisää 348100 lukuun 2244000.
x=\frac{-\left(-590\right)±1610}{2\times 1000}
Ota luvun 2592100 neliöjuuri.
x=\frac{590±1610}{2\times 1000}
Luvun -590 vastaluku on 590.
x=\frac{590±1610}{2000}
Kerro 2 ja 1000.
x=\frac{2200}{2000}
Ratkaise nyt yhtälö x=\frac{590±1610}{2000}, kun ± on plusmerkkinen. Lisää 590 lukuun 1610.
x=\frac{11}{10}
Supista murtoluku \frac{2200}{2000} luvulla 200.
x=-\frac{1020}{2000}
Ratkaise nyt yhtälö x=\frac{590±1610}{2000}, kun ± on miinusmerkkinen. Vähennä 1610 luvusta 590.
x=-\frac{51}{100}
Supista murtoluku \frac{-1020}{2000} luvulla 20.
x=\frac{11}{10} x=-\frac{51}{100}
Yhtälö on nyt ratkaistu.
1000x^{2}-590x-561=0
Tällaiset toisen asteen yhtälöt voidaan ratkaista neliöksi täydentämällä. Neliöksi täydentäminen vaatii, että yhtälö on muodossa x^{2}+bx=c.
1000x^{2}-590x-561-\left(-561\right)=-\left(-561\right)
Lisää 561 yhtälön kummallekin puolelle.
1000x^{2}-590x=-\left(-561\right)
Kun luku -561 vähennetään itsestään, tulokseksi jää 0.
1000x^{2}-590x=561
Vähennä -561 luvusta 0.
\frac{1000x^{2}-590x}{1000}=\frac{561}{1000}
Jaa molemmat puolet luvulla 1000.
x^{2}+\left(-\frac{590}{1000}\right)x=\frac{561}{1000}
Jakaminen luvulla 1000 kumoaa kertomisen luvulla 1000.
x^{2}-\frac{59}{100}x=\frac{561}{1000}
Supista murtoluku \frac{-590}{1000} luvulla 10.
x^{2}-\frac{59}{100}x+\left(-\frac{59}{200}\right)^{2}=\frac{561}{1000}+\left(-\frac{59}{200}\right)^{2}
Jaa -\frac{59}{100} (x-termin kerroin) 2:lla, jolloin saadaan -\frac{59}{200}. Lisää sitten -\frac{59}{200}:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
x^{2}-\frac{59}{100}x+\frac{3481}{40000}=\frac{561}{1000}+\frac{3481}{40000}
Korota -\frac{59}{200} neliöön korottamalla sekä osoittaja että nimittäjä neliöön.
x^{2}-\frac{59}{100}x+\frac{3481}{40000}=\frac{25921}{40000}
Lisää \frac{561}{1000} lukuun \frac{3481}{40000} selvittämällä yhteinen nimittäjä ja laskemalla osoittajat yhteen. Supista sen jälkeen murtoluku pienimpään mahdolliseen nimittäjään.
\left(x-\frac{59}{200}\right)^{2}=\frac{25921}{40000}
Jaa x^{2}-\frac{59}{100}x+\frac{3481}{40000} tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{59}{200}\right)^{2}}=\sqrt{\frac{25921}{40000}}
Ota neliöjuuri yhtälön molemmilta puolilta.
x-\frac{59}{200}=\frac{161}{200} x-\frac{59}{200}=-\frac{161}{200}
Sievennä.
x=\frac{11}{10} x=-\frac{51}{100}
Lisää \frac{59}{200} yhtälön kummallekin puolelle.