Hyppää pääsisältöön
Jaa tekijöihin
Tick mark Image
Laske
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

a+b=9 ab=10\times 2=20
Jaa lauseke tekijöihin ryhmittelemällä. Lauseke täytyy kirjoittaa ensin uudelleen muodossa 10y^{2}+ay+by+2. Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
1,20 2,10 4,5
Koska ab on positiivinen, a ja b on sama merkki. Koska a+b on positiivinen, a ja b ovat molemmat positiivisia. Luettele kaikki tällaisia esimerkiksi tuote 20.
1+20=21 2+10=12 4+5=9
Laske kunkin parin summa.
a=4 b=5
Ratkaisu on pari, joka antaa summa 9.
\left(10y^{2}+4y\right)+\left(5y+2\right)
Kirjoita \left(10y^{2}+4y\right)+\left(5y+2\right) uudelleen muodossa 10y^{2}+9y+2.
2y\left(5y+2\right)+5y+2
Ota 2y tekijäksi lausekkeessa 10y^{2}+4y.
\left(5y+2\right)\left(2y+1\right)
Jaa yleinen termi 5y+2 käyttämällä osittelu lain mukaisesti-ominaisuutta.
10y^{2}+9y+2=0
Toisen asteen polynomi voidaan jakaa tekijöihin käyttämällä muunnosta ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), jossa x_{1} ja x_{2} ovat toisen asteen yhtälön ax^{2}+bx+c=0 ratkaisuja.
y=\frac{-9±\sqrt{9^{2}-4\times 10\times 2}}{2\times 10}
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
y=\frac{-9±\sqrt{81-4\times 10\times 2}}{2\times 10}
Korota 9 neliöön.
y=\frac{-9±\sqrt{81-40\times 2}}{2\times 10}
Kerro -4 ja 10.
y=\frac{-9±\sqrt{81-80}}{2\times 10}
Kerro -40 ja 2.
y=\frac{-9±\sqrt{1}}{2\times 10}
Lisää 81 lukuun -80.
y=\frac{-9±1}{2\times 10}
Ota luvun 1 neliöjuuri.
y=\frac{-9±1}{20}
Kerro 2 ja 10.
y=-\frac{8}{20}
Ratkaise nyt yhtälö y=\frac{-9±1}{20}, kun ± on plusmerkkinen. Lisää -9 lukuun 1.
y=-\frac{2}{5}
Supista murtoluku \frac{-8}{20} luvulla 4.
y=-\frac{10}{20}
Ratkaise nyt yhtälö y=\frac{-9±1}{20}, kun ± on miinusmerkkinen. Vähennä 1 luvusta -9.
y=-\frac{1}{2}
Supista murtoluku \frac{-10}{20} luvulla 10.
10y^{2}+9y+2=10\left(y-\left(-\frac{2}{5}\right)\right)\left(y-\left(-\frac{1}{2}\right)\right)
Jaa alkuperäinen lauseke tekijöihin yhtälön ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) avulla. Korvaa -\frac{2}{5} kohteella x_{1} ja -\frac{1}{2} kohteella x_{2}.
10y^{2}+9y+2=10\left(y+\frac{2}{5}\right)\left(y+\frac{1}{2}\right)
Sievennä kaavan p-\left(-q\right) kaikki lausekkeet muotoon p+q.
10y^{2}+9y+2=10\times \frac{5y+2}{5}\left(y+\frac{1}{2}\right)
Lisää \frac{2}{5} lukuun y selvittämällä yhteinen nimittäjä ja laskemalla osoittajat yhteen. Supista sen jälkeen murtoluku pienimpään mahdolliseen nimittäjään.
10y^{2}+9y+2=10\times \frac{5y+2}{5}\times \frac{2y+1}{2}
Lisää \frac{1}{2} lukuun y selvittämällä yhteinen nimittäjä ja laskemalla osoittajat yhteen. Supista sen jälkeen murtoluku pienimpään mahdolliseen nimittäjään.
10y^{2}+9y+2=10\times \frac{\left(5y+2\right)\left(2y+1\right)}{5\times 2}
Kerro \frac{5y+2}{5} ja \frac{2y+1}{2} kertomalla osoittajat keskenään ja nimittäjät keskenään. Supista sen jälkeen murtoluku pienimpään mahdolliseen nimittäjään.
10y^{2}+9y+2=10\times \frac{\left(5y+2\right)\left(2y+1\right)}{10}
Kerro 5 ja 2.
10y^{2}+9y+2=\left(5y+2\right)\left(2y+1\right)
Supista lausekkeiden 10 ja 10 suurin yhteinen tekijä 10.