Hyppää pääsisältöön
Jaa tekijöihin
Tick mark Image
Laske
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

a+b=-1 ab=-6=-6
Jaa lauseke tekijöihin ryhmittelemällä. Lauseke täytyy kirjoittaa ensin uudelleen muodossa -x^{2}+ax+bx+6. Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
1,-6 2,-3
Koska ab on negatiivinen, a ja b vastakkaisen merkit. Koska a+b on negatiivinen, negatiivinen luku on suurempi kuin positiivinen arvo. Luettele kaikki tällaisia esimerkiksi tuote -6.
1-6=-5 2-3=-1
Laske kunkin parin summa.
a=2 b=-3
Ratkaisu on pari, joka antaa summa -1.
\left(-x^{2}+2x\right)+\left(-3x+6\right)
Kirjoita \left(-x^{2}+2x\right)+\left(-3x+6\right) uudelleen muodossa -x^{2}-x+6.
x\left(-x+2\right)+3\left(-x+2\right)
Jaa x toisessa ryhmässä ensimmäisessä ja 3.
\left(-x+2\right)\left(x+3\right)
Jaa yleinen termi -x+2 käyttämällä osittelu lain mukaisesti-ominaisuutta.
-x^{2}-x+6=0
Toisen asteen polynomi voidaan jakaa tekijöihin käyttämällä muunnosta ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), jossa x_{1} ja x_{2} ovat toisen asteen yhtälön ax^{2}+bx+c=0 ratkaisuja.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 6}}{2\left(-1\right)}
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-\left(-1\right)±\sqrt{1+4\times 6}}{2\left(-1\right)}
Kerro -4 ja -1.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\left(-1\right)}
Kerro 4 ja 6.
x=\frac{-\left(-1\right)±\sqrt{25}}{2\left(-1\right)}
Lisää 1 lukuun 24.
x=\frac{-\left(-1\right)±5}{2\left(-1\right)}
Ota luvun 25 neliöjuuri.
x=\frac{1±5}{2\left(-1\right)}
Luvun -1 vastaluku on 1.
x=\frac{1±5}{-2}
Kerro 2 ja -1.
x=\frac{6}{-2}
Ratkaise nyt yhtälö x=\frac{1±5}{-2}, kun ± on plusmerkkinen. Lisää 1 lukuun 5.
x=-3
Jaa 6 luvulla -2.
x=-\frac{4}{-2}
Ratkaise nyt yhtälö x=\frac{1±5}{-2}, kun ± on miinusmerkkinen. Vähennä 5 luvusta 1.
x=2
Jaa -4 luvulla -2.
-x^{2}-x+6=-\left(x-\left(-3\right)\right)\left(x-2\right)
Jaa alkuperäinen lauseke tekijöihin yhtälön ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) avulla. Korvaa -3 kohteella x_{1} ja 2 kohteella x_{2}.
-x^{2}-x+6=-\left(x+3\right)\left(x-2\right)
Sievennä kaavan p-\left(-q\right) kaikki lausekkeet muotoon p+q.