Ratkaise muuttujan a suhteen
a<-4
Jakaa
Kopioitu leikepöydälle
-18>15a+45-3
Laske lukujen 15 ja a+3 tulo käyttämällä osittelulakia.
-18>15a+42
Vähennä 3 luvusta 45 saadaksesi tuloksen 42.
15a+42<-18
Vaihda puolia niin, että kaikki muuttujat ovat vasemmalla puolella. Tämä muuttaa merkin suunnan.
15a<-18-42
Vähennä 42 molemmilta puolilta.
15a<-60
Vähennä 42 luvusta -18 saadaksesi tuloksen -60.
a<\frac{-60}{15}
Jaa molemmat puolet luvulla 15. Koska 15 on positiivinen, epäyhtälö suunta säilyy ennallaan.
a<-4
Jaa -60 luvulla 15, jolloin ratkaisuksi tulee -4.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}