Hyppää pääsisältöön
Ratkaise muuttujan x suhteen
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

a+b=2 ab=-3=-3
Ratkaise yhtälö jakamalla vasen puoli tekijöihin ryhmittelyn avulla. Vasen puoli on ensin kirjoitettava uudelleen muotoon -x^{2}+ax+bx+3. Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
a=3 b=-1
Koska ab on negatiivinen, a ja b vastakkaisen merkit. Koska a+b on positiivinen, positiivisen luvun absoluuttinen arvo on suurempi kuin negatiivisen. Ainoa tällainen pari on järjestelmäratkaisu.
\left(-x^{2}+3x\right)+\left(-x+3\right)
Kirjoita \left(-x^{2}+3x\right)+\left(-x+3\right) uudelleen muodossa -x^{2}+2x+3.
-x\left(x-3\right)-\left(x-3\right)
Jaa -x toisessa ryhmässä ensimmäisessä ja -1.
\left(x-3\right)\left(-x-1\right)
Jaa yleinen termi x-3 käyttämällä osittelu lain mukaisesti-ominaisuutta.
x=3 x=-1
Voit etsiä kaava ratkaisuja, ratkaista x-3=0 ja -x-1=0.
-x^{2}+2x+3=0
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla -1, b luvulla 2 ja c luvulla 3 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
Korota 2 neliöön.
x=\frac{-2±\sqrt{4+4\times 3}}{2\left(-1\right)}
Kerro -4 ja -1.
x=\frac{-2±\sqrt{4+12}}{2\left(-1\right)}
Kerro 4 ja 3.
x=\frac{-2±\sqrt{16}}{2\left(-1\right)}
Lisää 4 lukuun 12.
x=\frac{-2±4}{2\left(-1\right)}
Ota luvun 16 neliöjuuri.
x=\frac{-2±4}{-2}
Kerro 2 ja -1.
x=\frac{2}{-2}
Ratkaise nyt yhtälö x=\frac{-2±4}{-2}, kun ± on plusmerkkinen. Lisää -2 lukuun 4.
x=-1
Jaa 2 luvulla -2.
x=-\frac{6}{-2}
Ratkaise nyt yhtälö x=\frac{-2±4}{-2}, kun ± on miinusmerkkinen. Vähennä 4 luvusta -2.
x=3
Jaa -6 luvulla -2.
x=-1 x=3
Yhtälö on nyt ratkaistu.
-x^{2}+2x+3=0
Tällaiset toisen asteen yhtälöt voidaan ratkaista neliöksi täydentämällä. Neliöksi täydentäminen vaatii, että yhtälö on muodossa x^{2}+bx=c.
-x^{2}+2x+3-3=-3
Vähennä 3 yhtälön molemmilta puolilta.
-x^{2}+2x=-3
Kun luku 3 vähennetään itsestään, tulokseksi jää 0.
\frac{-x^{2}+2x}{-1}=-\frac{3}{-1}
Jaa molemmat puolet luvulla -1.
x^{2}+\frac{2}{-1}x=-\frac{3}{-1}
Jakaminen luvulla -1 kumoaa kertomisen luvulla -1.
x^{2}-2x=-\frac{3}{-1}
Jaa 2 luvulla -1.
x^{2}-2x=3
Jaa -3 luvulla -1.
x^{2}-2x+1=3+1
Jaa -2 (x-termin kerroin) 2:lla, jolloin saadaan -1. Lisää sitten -1:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
x^{2}-2x+1=4
Lisää 3 lukuun 1.
\left(x-1\right)^{2}=4
Jaa x^{2}-2x+1 tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Ota neliöjuuri yhtälön molemmilta puolilta.
x-1=2 x-1=-2
Sievennä.
x=3 x=-1
Lisää 1 yhtälön kummallekin puolelle.