Hyppää pääsisältöön
Ratkaise muuttujan x suhteen
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

x^{2}+2x-3=5
Laske lukujen x-1 ja x+3 tulo käyttämällä osittelulakia ja yhdistä samanmuotoiset termit.
x^{2}+2x-3-5=0
Vähennä 5 molemmilta puolilta.
x^{2}+2x-8=0
Vähennä 5 luvusta -3 saadaksesi tuloksen -8.
x=\frac{-2±\sqrt{2^{2}-4\left(-8\right)}}{2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 1, b luvulla 2 ja c luvulla -8 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-8\right)}}{2}
Korota 2 neliöön.
x=\frac{-2±\sqrt{4+32}}{2}
Kerro -4 ja -8.
x=\frac{-2±\sqrt{36}}{2}
Lisää 4 lukuun 32.
x=\frac{-2±6}{2}
Ota luvun 36 neliöjuuri.
x=\frac{4}{2}
Ratkaise nyt yhtälö x=\frac{-2±6}{2}, kun ± on plusmerkkinen. Lisää -2 lukuun 6.
x=2
Jaa 4 luvulla 2.
x=-\frac{8}{2}
Ratkaise nyt yhtälö x=\frac{-2±6}{2}, kun ± on miinusmerkkinen. Vähennä 6 luvusta -2.
x=-4
Jaa -8 luvulla 2.
x=2 x=-4
Yhtälö on nyt ratkaistu.
x^{2}+2x-3=5
Laske lukujen x-1 ja x+3 tulo käyttämällä osittelulakia ja yhdistä samanmuotoiset termit.
x^{2}+2x=5+3
Lisää 3 molemmille puolille.
x^{2}+2x=8
Selvitä 8 laskemalla yhteen 5 ja 3.
x^{2}+2x+1^{2}=8+1^{2}
Jaa 2 (x-termin kerroin) 2:lla, jolloin saadaan 1. Lisää sitten 1:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
x^{2}+2x+1=8+1
Korota 1 neliöön.
x^{2}+2x+1=9
Lisää 8 lukuun 1.
\left(x+1\right)^{2}=9
Jaa x^{2}+2x+1 tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{9}
Ota neliöjuuri yhtälön molemmilta puolilta.
x+1=3 x+1=-3
Sievennä.
x=2 x=-4
Vähennä 1 yhtälön molemmilta puolilta.