Hyppää pääsisältöön
Ratkaise muuttujan x suhteen
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

x^{2}+5x+6=2
Laske lukujen x+2 ja x+3 tulo käyttämällä osittelulakia ja yhdistä samanmuotoiset termit.
x^{2}+5x+6-2=0
Vähennä 2 molemmilta puolilta.
x^{2}+5x+4=0
Vähennä 2 luvusta 6 saadaksesi tuloksen 4.
x=\frac{-5±\sqrt{5^{2}-4\times 4}}{2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 1, b luvulla 5 ja c luvulla 4 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 4}}{2}
Korota 5 neliöön.
x=\frac{-5±\sqrt{25-16}}{2}
Kerro -4 ja 4.
x=\frac{-5±\sqrt{9}}{2}
Lisää 25 lukuun -16.
x=\frac{-5±3}{2}
Ota luvun 9 neliöjuuri.
x=-\frac{2}{2}
Ratkaise nyt yhtälö x=\frac{-5±3}{2}, kun ± on plusmerkkinen. Lisää -5 lukuun 3.
x=-1
Jaa -2 luvulla 2.
x=-\frac{8}{2}
Ratkaise nyt yhtälö x=\frac{-5±3}{2}, kun ± on miinusmerkkinen. Vähennä 3 luvusta -5.
x=-4
Jaa -8 luvulla 2.
x=-1 x=-4
Yhtälö on nyt ratkaistu.
x^{2}+5x+6=2
Laske lukujen x+2 ja x+3 tulo käyttämällä osittelulakia ja yhdistä samanmuotoiset termit.
x^{2}+5x=2-6
Vähennä 6 molemmilta puolilta.
x^{2}+5x=-4
Vähennä 6 luvusta 2 saadaksesi tuloksen -4.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-4+\left(\frac{5}{2}\right)^{2}
Jaa 5 (x-termin kerroin) 2:lla, jolloin saadaan \frac{5}{2}. Lisää sitten \frac{5}{2}:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
x^{2}+5x+\frac{25}{4}=-4+\frac{25}{4}
Korota \frac{5}{2} neliöön korottamalla sekä osoittaja että nimittäjä neliöön.
x^{2}+5x+\frac{25}{4}=\frac{9}{4}
Lisää -4 lukuun \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{9}{4}
Jaa x^{2}+5x+\frac{25}{4} tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Ota neliöjuuri yhtälön molemmilta puolilta.
x+\frac{5}{2}=\frac{3}{2} x+\frac{5}{2}=-\frac{3}{2}
Sievennä.
x=-1 x=-4
Vähennä \frac{5}{2} yhtälön molemmilta puolilta.