Hyppää pääsisältöön
Ratkaise muuttujan x suhteen
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

x^{2}-x-2=4
Laske lukujen x+1 ja x-2 tulo käyttämällä osittelulakia ja yhdistä samanmuotoiset termit.
x^{2}-x-2-4=0
Vähennä 4 molemmilta puolilta.
x^{2}-x-6=0
Vähennä 4 luvusta -2 saadaksesi tuloksen -6.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-6\right)}}{2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 1, b luvulla -1 ja c luvulla -6 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2}
Kerro -4 ja -6.
x=\frac{-\left(-1\right)±\sqrt{25}}{2}
Lisää 1 lukuun 24.
x=\frac{-\left(-1\right)±5}{2}
Ota luvun 25 neliöjuuri.
x=\frac{1±5}{2}
Luvun -1 vastaluku on 1.
x=\frac{6}{2}
Ratkaise nyt yhtälö x=\frac{1±5}{2}, kun ± on plusmerkkinen. Lisää 1 lukuun 5.
x=3
Jaa 6 luvulla 2.
x=-\frac{4}{2}
Ratkaise nyt yhtälö x=\frac{1±5}{2}, kun ± on miinusmerkkinen. Vähennä 5 luvusta 1.
x=-2
Jaa -4 luvulla 2.
x=3 x=-2
Yhtälö on nyt ratkaistu.
x^{2}-x-2=4
Laske lukujen x+1 ja x-2 tulo käyttämällä osittelulakia ja yhdistä samanmuotoiset termit.
x^{2}-x=4+2
Lisää 2 molemmille puolille.
x^{2}-x=6
Selvitä 6 laskemalla yhteen 4 ja 2.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=6+\left(-\frac{1}{2}\right)^{2}
Jaa -1 (x-termin kerroin) 2:lla, jolloin saadaan -\frac{1}{2}. Lisää sitten -\frac{1}{2}:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
x^{2}-x+\frac{1}{4}=6+\frac{1}{4}
Korota -\frac{1}{2} neliöön korottamalla sekä osoittaja että nimittäjä neliöön.
x^{2}-x+\frac{1}{4}=\frac{25}{4}
Lisää 6 lukuun \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{25}{4}
Jaa x^{2}-x+\frac{1}{4} tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Ota neliöjuuri yhtälön molemmilta puolilta.
x-\frac{1}{2}=\frac{5}{2} x-\frac{1}{2}=-\frac{5}{2}
Sievennä.
x=3 x=-2
Lisää \frac{1}{2} yhtälön kummallekin puolelle.