Ratkaise muuttujan x suhteen
x=-5
x=3
Kuvaaja
Jakaa
Kopioitu leikepöydälle
x^{2}+2x-8=7
Laske lukujen x-2 ja x+4 tulo käyttämällä osittelulakia ja yhdistä samanmuotoiset termit.
x^{2}+2x-8-7=0
Vähennä 7 molemmilta puolilta.
x^{2}+2x-15=0
Vähennä 7 luvusta -8 saadaksesi tuloksen -15.
x=\frac{-2±\sqrt{2^{2}-4\left(-15\right)}}{2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 1, b luvulla 2 ja c luvulla -15 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-15\right)}}{2}
Korota 2 neliöön.
x=\frac{-2±\sqrt{4+60}}{2}
Kerro -4 ja -15.
x=\frac{-2±\sqrt{64}}{2}
Lisää 4 lukuun 60.
x=\frac{-2±8}{2}
Ota luvun 64 neliöjuuri.
x=\frac{6}{2}
Ratkaise nyt yhtälö x=\frac{-2±8}{2}, kun ± on plusmerkkinen. Lisää -2 lukuun 8.
x=3
Jaa 6 luvulla 2.
x=-\frac{10}{2}
Ratkaise nyt yhtälö x=\frac{-2±8}{2}, kun ± on miinusmerkkinen. Vähennä 8 luvusta -2.
x=-5
Jaa -10 luvulla 2.
x=3 x=-5
Yhtälö on nyt ratkaistu.
x^{2}+2x-8=7
Laske lukujen x-2 ja x+4 tulo käyttämällä osittelulakia ja yhdistä samanmuotoiset termit.
x^{2}+2x=7+8
Lisää 8 molemmille puolille.
x^{2}+2x=15
Selvitä 15 laskemalla yhteen 7 ja 8.
x^{2}+2x+1^{2}=15+1^{2}
Jaa 2 (x-termin kerroin) 2:lla, jolloin saadaan 1. Lisää sitten 1:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
x^{2}+2x+1=15+1
Korota 1 neliöön.
x^{2}+2x+1=16
Lisää 15 lukuun 1.
\left(x+1\right)^{2}=16
Jaa x^{2}+2x+1 tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{16}
Ota neliöjuuri yhtälön molemmilta puolilta.
x+1=4 x+1=-4
Sievennä.
x=3 x=-5
Vähennä 1 yhtälön molemmilta puolilta.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}