Hyppää pääsisältöön
Ratkaise muuttujan x suhteen
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

x^{2}-4x+4=9
Käytä binomilausetta \left(a-b\right)^{2}=a^{2}-2ab+b^{2} yhtälön \left(x-2\right)^{2} laajentamiseen.
x^{2}-4x+4-9=0
Vähennä 9 molemmilta puolilta.
x^{2}-4x-5=0
Vähennä 9 luvusta 4 saadaksesi tuloksen -5.
a+b=-4 ab=-5
Jos haluat ratkaista kaavan, kerroin x^{2}-4x-5 käyttämällä kaavaa x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
a=-5 b=1
Koska ab on negatiivinen, a ja b vastakkaisen merkit. Koska a+b on negatiivinen, negatiivinen luku on suurempi kuin positiivinen arvo. Ainoa tällainen pari on järjestelmäratkaisu.
\left(x-5\right)\left(x+1\right)
Kirjoita tekijöihin jaettu lauseke \left(x+a\right)\left(x+b\right) uudelleen käyttämällä saatuja arvoja.
x=5 x=-1
Voit etsiä kaava ratkaisuja, ratkaista x-5=0 ja x+1=0.
x^{2}-4x+4=9
Käytä binomilausetta \left(a-b\right)^{2}=a^{2}-2ab+b^{2} yhtälön \left(x-2\right)^{2} laajentamiseen.
x^{2}-4x+4-9=0
Vähennä 9 molemmilta puolilta.
x^{2}-4x-5=0
Vähennä 9 luvusta 4 saadaksesi tuloksen -5.
a+b=-4 ab=1\left(-5\right)=-5
Ratkaise yhtälö jakamalla vasen puoli tekijöihin ryhmittelyn avulla. Vasen puoli on ensin kirjoitettava uudelleen muotoon x^{2}+ax+bx-5. Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
a=-5 b=1
Koska ab on negatiivinen, a ja b vastakkaisen merkit. Koska a+b on negatiivinen, negatiivinen luku on suurempi kuin positiivinen arvo. Ainoa tällainen pari on järjestelmäratkaisu.
\left(x^{2}-5x\right)+\left(x-5\right)
Kirjoita \left(x^{2}-5x\right)+\left(x-5\right) uudelleen muodossa x^{2}-4x-5.
x\left(x-5\right)+x-5
Ota x tekijäksi lausekkeessa x^{2}-5x.
\left(x-5\right)\left(x+1\right)
Jaa yleinen termi x-5 käyttämällä osittelu lain mukaisesti-ominaisuutta.
x=5 x=-1
Voit etsiä kaava ratkaisuja, ratkaista x-5=0 ja x+1=0.
x^{2}-4x+4=9
Käytä binomilausetta \left(a-b\right)^{2}=a^{2}-2ab+b^{2} yhtälön \left(x-2\right)^{2} laajentamiseen.
x^{2}-4x+4-9=0
Vähennä 9 molemmilta puolilta.
x^{2}-4x-5=0
Vähennä 9 luvusta 4 saadaksesi tuloksen -5.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-5\right)}}{2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 1, b luvulla -4 ja c luvulla -5 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-5\right)}}{2}
Korota -4 neliöön.
x=\frac{-\left(-4\right)±\sqrt{16+20}}{2}
Kerro -4 ja -5.
x=\frac{-\left(-4\right)±\sqrt{36}}{2}
Lisää 16 lukuun 20.
x=\frac{-\left(-4\right)±6}{2}
Ota luvun 36 neliöjuuri.
x=\frac{4±6}{2}
Luvun -4 vastaluku on 4.
x=\frac{10}{2}
Ratkaise nyt yhtälö x=\frac{4±6}{2}, kun ± on plusmerkkinen. Lisää 4 lukuun 6.
x=5
Jaa 10 luvulla 2.
x=-\frac{2}{2}
Ratkaise nyt yhtälö x=\frac{4±6}{2}, kun ± on miinusmerkkinen. Vähennä 6 luvusta 4.
x=-1
Jaa -2 luvulla 2.
x=5 x=-1
Yhtälö on nyt ratkaistu.
\sqrt{\left(x-2\right)^{2}}=\sqrt{9}
Ota neliöjuuri yhtälön molemmilta puolilta.
x-2=3 x-2=-3
Sievennä.
x=5 x=-1
Lisää 2 yhtälön kummallekin puolelle.