Ratkaise muuttujan x suhteen
x=1
Kuvaaja
Tietokilpailu
Quadratic Equation
( x - 1 ) ^ { 2 } = 0
Jakaa
Kopioitu leikepöydälle
x^{2}-2x+1=0
Käytä binomilausetta \left(a-b\right)^{2}=a^{2}-2ab+b^{2} yhtälön \left(x-1\right)^{2} laajentamiseen.
a+b=-2 ab=1
Jos haluat ratkaista kaavan, kerroin x^{2}-2x+1 käyttämällä kaavaa x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
a=-1 b=-1
Koska ab on positiivinen, a ja b on sama merkki. Koska a+b on negatiivinen, a ja b ovat molemmat negatiivisia. Ainoa tällainen pari on järjestelmäratkaisu.
\left(x-1\right)\left(x-1\right)
Kirjoita tekijöihin jaettu lauseke \left(x+a\right)\left(x+b\right) uudelleen käyttämällä saatuja arvoja.
\left(x-1\right)^{2}
Kirjoita uudelleen binomin neliönä.
x=1
Löydät yhtälön ratkaisun ratkaisemalla yhtälön x-1=0.
x^{2}-2x+1=0
Käytä binomilausetta \left(a-b\right)^{2}=a^{2}-2ab+b^{2} yhtälön \left(x-1\right)^{2} laajentamiseen.
a+b=-2 ab=1\times 1=1
Ratkaise yhtälö jakamalla vasen puoli tekijöihin ryhmittelyn avulla. Vasen puoli on ensin kirjoitettava uudelleen muotoon x^{2}+ax+bx+1. Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
a=-1 b=-1
Koska ab on positiivinen, a ja b on sama merkki. Koska a+b on negatiivinen, a ja b ovat molemmat negatiivisia. Ainoa tällainen pari on järjestelmäratkaisu.
\left(x^{2}-x\right)+\left(-x+1\right)
Kirjoita \left(x^{2}-x\right)+\left(-x+1\right) uudelleen muodossa x^{2}-2x+1.
x\left(x-1\right)-\left(x-1\right)
Jaa x toisessa ryhmässä ensimmäisessä ja -1.
\left(x-1\right)\left(x-1\right)
Jaa yleinen termi x-1 käyttämällä osittelu lain mukaisesti-ominaisuutta.
\left(x-1\right)^{2}
Kirjoita uudelleen binomin neliönä.
x=1
Löydät yhtälön ratkaisun ratkaisemalla yhtälön x-1=0.
x^{2}-2x+1=0
Käytä binomilausetta \left(a-b\right)^{2}=a^{2}-2ab+b^{2} yhtälön \left(x-1\right)^{2} laajentamiseen.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4}}{2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 1, b luvulla -2 ja c luvulla 1 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4}}{2}
Korota -2 neliöön.
x=\frac{-\left(-2\right)±\sqrt{0}}{2}
Lisää 4 lukuun -4.
x=-\frac{-2}{2}
Ota luvun 0 neliöjuuri.
x=\frac{2}{2}
Luvun -2 vastaluku on 2.
x=1
Jaa 2 luvulla 2.
\sqrt{\left(x-1\right)^{2}}=\sqrt{0}
Ota neliöjuuri yhtälön molemmilta puolilta.
x-1=0 x-1=0
Sievennä.
x=1 x=1
Lisää 1 yhtälön kummallekin puolelle.
x=1
Yhtälö on nyt ratkaistu. Ratkaisut ovat samat.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}