Hyppää pääsisältöön
Ratkaise muuttujan x suhteen (complex solution)
Tick mark Image
Ratkaise muuttujan x suhteen
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

x^{4}+2x^{3}-x-2=0
Sievennä.
±2,±1
Rationaaliluvulle lause, Kaikki polynomin rationaaliluvulle ovat muodossa \frac{p}{q}, jossa p jakaa vakio termin -2 ja q jakaa alku kertoimen 1. Luettele kaikki ehdokkaat \frac{p}{q}.
x=1
Etsi yksi tällainen juuri kokeilemalla kaikkia kokonaislukuarvoja pienimmästä alkaen absoluuttisen arvon mukaan. Jos kokonaislukujuuria ei löydy, kokeile murtolukuja.
x^{3}+3x^{2}+3x+2=0
Tekijä lause x-k on kunkin k pääsivuston polynomin kerroin. Jaa x^{4}+2x^{3}-x-2 luvulla x-1, jolloin ratkaisuksi tulee x^{3}+3x^{2}+3x+2. Ratkaise yhtälö, kun sen tulos on yhtä suuri kuin 0.
±2,±1
Rationaaliluvulle lause, Kaikki polynomin rationaaliluvulle ovat muodossa \frac{p}{q}, jossa p jakaa vakio termin 2 ja q jakaa alku kertoimen 1. Luettele kaikki ehdokkaat \frac{p}{q}.
x=-2
Etsi yksi tällainen juuri kokeilemalla kaikkia kokonaislukuarvoja pienimmästä alkaen absoluuttisen arvon mukaan. Jos kokonaislukujuuria ei löydy, kokeile murtolukuja.
x^{2}+x+1=0
Tekijä lause x-k on kunkin k pääsivuston polynomin kerroin. Jaa x^{3}+3x^{2}+3x+2 luvulla x+2, jolloin ratkaisuksi tulee x^{2}+x+1. Ratkaise yhtälö, kun sen tulos on yhtä suuri kuin 0.
x=\frac{-1±\sqrt{1^{2}-4\times 1\times 1}}{2}
Kaikki kaavan ax^{2}+bx+c=0 yhtälöt voidaan ratkaista käyttämällä toisen asteen yhtälön kaavaa: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Sijoita kaavassa muuttujan 1 tilalle a, muuttujan 1 tilalle b ja muuttujan 1 tilalle c.
x=\frac{-1±\sqrt{-3}}{2}
Suorita laskutoimitukset.
x=\frac{-\sqrt{3}i-1}{2} x=\frac{-1+\sqrt{3}i}{2}
Ratkaise yhtälö x^{2}+x+1=0 kun ± on plus ja ± on miinus.
x=1 x=-2 x=\frac{-\sqrt{3}i-1}{2} x=\frac{-1+\sqrt{3}i}{2}
Luetteloi kaikki löydetyt ratkaisut.
x^{4}+2x^{3}-x-2=0
Sievennä.
±2,±1
Rationaaliluvulle lause, Kaikki polynomin rationaaliluvulle ovat muodossa \frac{p}{q}, jossa p jakaa vakio termin -2 ja q jakaa alku kertoimen 1. Luettele kaikki ehdokkaat \frac{p}{q}.
x=1
Etsi yksi tällainen juuri kokeilemalla kaikkia kokonaislukuarvoja pienimmästä alkaen absoluuttisen arvon mukaan. Jos kokonaislukujuuria ei löydy, kokeile murtolukuja.
x^{3}+3x^{2}+3x+2=0
Tekijä lause x-k on kunkin k pääsivuston polynomin kerroin. Jaa x^{4}+2x^{3}-x-2 luvulla x-1, jolloin ratkaisuksi tulee x^{3}+3x^{2}+3x+2. Ratkaise yhtälö, kun sen tulos on yhtä suuri kuin 0.
±2,±1
Rationaaliluvulle lause, Kaikki polynomin rationaaliluvulle ovat muodossa \frac{p}{q}, jossa p jakaa vakio termin 2 ja q jakaa alku kertoimen 1. Luettele kaikki ehdokkaat \frac{p}{q}.
x=-2
Etsi yksi tällainen juuri kokeilemalla kaikkia kokonaislukuarvoja pienimmästä alkaen absoluuttisen arvon mukaan. Jos kokonaislukujuuria ei löydy, kokeile murtolukuja.
x^{2}+x+1=0
Tekijä lause x-k on kunkin k pääsivuston polynomin kerroin. Jaa x^{3}+3x^{2}+3x+2 luvulla x+2, jolloin ratkaisuksi tulee x^{2}+x+1. Ratkaise yhtälö, kun sen tulos on yhtä suuri kuin 0.
x=\frac{-1±\sqrt{1^{2}-4\times 1\times 1}}{2}
Kaikki kaavan ax^{2}+bx+c=0 yhtälöt voidaan ratkaista käyttämällä toisen asteen yhtälön kaavaa: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Sijoita kaavassa muuttujan 1 tilalle a, muuttujan 1 tilalle b ja muuttujan 1 tilalle c.
x=\frac{-1±\sqrt{-3}}{2}
Suorita laskutoimitukset.
x\in \emptyset
Negatiivisen luvun neliöjuurta ei ole määritelty reaalilukujen joukossa, joten ratkaisuja ei ole.
x=1 x=-2
Luetteloi kaikki löydetyt ratkaisut.